精英家教网 > 高中数学 > 题目详情
设椭圆C:
x2
a2
+
y2
2
=1(a>0)
的左、右焦点分别为F1、F2,A是椭圆C上的一点,且
AF2
F1F2
=0
,坐标原点O到直线AF1的距离为
1
3
|OF1|

(I)求椭圆C的方程;
(II)设Q是椭圆C上的一点,过Q的直线l交x轴于点P(-1,0),较y轴于点M,若
MQ
=2
QP
,求直线l的方程.
分析:(I)由题意可得出F1(-
a2-2
,0),F2(
a2-2
,0)
,再由
AF2
F1F2
=0
得出
AF2
F1F2
,从而可得出点A的坐标(
a2-2
,±
2
a
)
,由此可得出AF1所在直线方程为y=±(
x
a
a2-2
+
1
a
)
,再由坐标原点O到直线AF1的距离为
1
3
|OF1|
.建立方程,即可解出a的值,由此得椭圆的方程;
(II)由题意知直线l的斜率存在,设直线l的方程为y=k(x+1),求出点M的坐标,设出Q的坐标,代入向量
MQ
=2
QP
得到关于两点M与Q的坐标的方程,解出点Q的坐标来,再由点Q在椭圆上,代入椭圆的方程即可得到直线的斜率k所满足的方程,解出k的值,即可得直线l的方程
解答:解:(I)由题设知F1(-
a2-2
,0),F2(
a2-2
,0)

由于
AF2
F1F2
=0
,则有
AF2
F1F2

所以点A的坐标为(
a2-2
,±
2
a
)

故AF1所在直线方程为y=±(
x
a
a2-2
+
1
a
)
,…(3分)
所以坐标原点O到直线AF1的距离为
a2-2
a2-1
(a>
2
)

|OF1|=
a2-2
,所以
a2-2
a2-1
=
1
3
a2-2

解得a=2(a>
2
)

所求椭圆的方程为
x2
4
+
y2
2
=1
.…(5分)
(II)由题意知直线l的斜率存在,
设直线l的方程为y=k(x+1),则有M(0,k),
设Q(x1,y1),由于
MQ
=2
QP

∴(x1,y1-k)=2(-1-x1,-y1),
解得x1=-
2
3
y1=
k
3
…(8分)
又Q在椭圆C上,得
(-
2
3
)
2
4
+
(
k
3
)
2
2
=1

解得k=±4,…(10分)
故直线l的方程为y=4(x+1)或y=-4(x+1),
即4x-y+4=0或4x+y+4=0.  …(12分)
点评:本题考查直线与圆锥曲线的综合问题,考查了转化的思想与方程的思想,判断推理的能力及综合利用直线与椭圆的有关知识解题,正确解答本题的关键是准确理解题意建立所引入的参数的方程求出参数的值,本部分题符号运算多,计算量大,要认真严谨计算
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1
(a>b>1)右焦点为F,它与直线l:y=k(x+1)相交于P、Q两点,l与x轴的交点M到椭圆左准线的距离为d,若椭圆的焦距是b与d+|MF|的等差中项.
(1)求椭圆离心率e;
(2)设N与M关于原点O对称,若以N为圆心,b为半径的圆与l相切,且
OP
OQ
=-
5
3
求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左.右焦点分别为F1F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2
F1F2
+
F2Q
=
0

(1)若过A.Q.F2三点的圆恰好与直线l:x-
3
y-3=0相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M.N两点.试证明:
1
|F2M|
+
1
|F2N|
为定值;②在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城一模)设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
恒过定点A(1,2),则椭圆的中心到准线的距离的最小值
5
+2
5
+2

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1
(a,b>0)的左、右焦点分别为F1,F2,若P 是椭圆上的一点,|
PF1
|+|
PF2
|=4
,离心率e=
3
2

(1)求椭圆C的方程;
(2)若P 是第一象限内该椭圆上的一点,
PF1
PF2
=-
5
4
,求点P的坐标;
(3)设过定点P(0,2)的直线与椭圆交于不同的两点A,B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左,右焦点分别为F1,F2,离心率为e=
2
2
,以F1为圆心,|F1F2|为半径的圆与直线x-
3
y-3=0
相切.
(I)求椭圆C的方程;
(II)直线y=x交椭圆C于A、B两点,D为椭圆上异于A、B的点,求△ABD面积的最大值.

查看答案和解析>>

同步练习册答案