精英家教网 > 高中数学 > 题目详情

【题目】已知函数为常数,是自然对数的底数),曲线在点处的切线与轴平行.

(1)求的值;

(2)求的单调区间;

(3)设,其中的导函数.证明:对任意.

【答案】(1);(2)单调递增区间为;单调递减区间为;(3)详见解析.

【解析】

试题分析:(1)根据题意分析可能曲线在点处的切线与轴平行,等价于,从而;(2)由(1)可知,只需考虑分子的正负性即可,而上单调递减,再由,故当时,单调递增;当时,单调递减,单调递增区间为;单调递减区间为;(3),这是一指对相结合的函数,混在一起考虑其单调性比较复杂,因此考虑分开研究各自的取值情况:记,令,得

时,单调递增;当时,单调递减,

,即.

上单调递减,

,即,综合可知,.

试题解析:(1),依题意,为所求;

(2)由(1)可知,,记

上单调递减,又

时,单调递增;当时,单调递减,单调递增区间为;单调递减区间为

(3)

,令,得

时,单调递增;当时,单调递减,

,即.

上单调递减,

,即,综合可知,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ax2﹣(2a+1)x+2lnx(a∈R).
(1)当a=1时,求函数f(x)的单调区间;
(2)当a>0时,设g(x)=(x2﹣2x)ex , 求证:对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点, 轴的正半轴为极轴,建立极坐标系,两坐标系中取相同的单位长度,已知曲线的方程为,点.

(1)求曲线的直角坐标方程和点的直角坐标;

(2)设为曲线上一动点,以为对角线的矩形的一边平行于极轴,求矩形周长的最小值及此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的部分图象如图所示.

(1) 求函数的解析式;

(2) 如何由函数的通过适当图象的变换得到函数的图象, 写出变换过程;

(3) 若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,A={x|x≥3},B={x|x2﹣8x+7≤0},C={x|x≥a﹣1}
(1)求A∩B,A∪B;
(2)若A∩C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数中,表示同一函数的是(
A.f(x)=lgx4 , g(x)=4lgx
B.
C. ,g(x)=x+2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+alnx. (Ⅰ)当a=﹣2时,求函数f(x)的单调区间和极值;
(Ⅱ)若g(x)=f(x)+ 在[1,+∞)上是单调增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

某工厂有100名工人接受了生产1000台某产品的总任务,每台产品由9个甲型装置和3个乙型装置配套组成,每个工人每小时能加工完成1个甲型装置或3个乙型装置.现将工人分成两组分别加工甲型和乙型装置.设加工甲型装置的工人有x人,他们加工完甲型装置所需时间为t1小时,其余工人加工完乙型装置所需时间为t2小时.

f(x)=t1t2

(Ⅰ)求f(x)的解析式,并写出其定义域;

(Ⅱ)当x等于多少时,f(x)取得最小值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中秋节即将到来,为了做好中秋节商场促销活动,某商场打算将进行促销活动的礼品盒重新设计.方案如下:将一块边长为10的正方形纸片剪去四个全等的等腰三角形 再将剩下的阴影部分折成一个四棱锥形状的包装盒,其中重合于点 重合, 重合, 重合, 重合(如图所示).

(1)求证:平面平面

(2)已知,过于点,求的值.

查看答案和解析>>

同步练习册答案