A. | 锐角三角形 | B. | 直角三角形 | C. | 钝角三角形 | D. | 等边三角形 |
分析 根据双曲线的定义,结合|PF1|=2|PF2|,利用余弦定理,求cos∠PF2F1的值,即可得出结论.
解答 解:将双曲线方程x2-y2=2化为标准方程$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{2}$=1,则a=$\sqrt{2}$,b=$\sqrt{2}$,c=2,
设|PF1|=2|PF2|=2m,则根据双曲线的定义,|PF1|-|PF2|=2a可得m=2$\sqrt{2}$,
∴|PF1|=4$\sqrt{2}$,|PF2|=2$\sqrt{2}$,
∵|F1F2|=2c=4,
∴cos∠PF2F1=$\frac{16+8-32}{2×4×2\sqrt{2}}$=-$\frac{\sqrt{2}}{4}$<0,
∴∠PF2F1为钝角.
故选C.
点评 本题考查双曲线的性质,考查双曲线的定义,考查余弦定理的运用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [$\frac{4}{3}$,+∞) | B. | (1,$\frac{4}{3}$] | C. | [$\frac{5}{3}$,+∞) | D. | (1,$\frac{5}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (2x+2)5 | B. | 2x5 | C. | (2x-1)5 | D. | 32x5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $k≤-4或k≥\frac{3}{4}$ | B. | $-4≤k≤\frac{3}{4}$ | C. | $k≤-\frac{3}{4}或k≥4$ | D. | $-\frac{15}{4}≤k≤4$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com