精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知椭圆的中心在坐标原点、对称轴为坐标轴,且抛物线的焦点是它的一个焦点,又点在该椭圆上.
(1)求椭圆的方程;
(2)若斜率为直线与椭圆交于不同的两点,当面积的最大值时,求直线的方程.

(1); (2)

解析试题分析:(1)由已知抛物线的焦点为,
故设椭圆方程为                                ………2分
将点代入方程得,整理得,得(舍) 
故所求椭圆方程为                                  ………5分
(2) 设直线的方程为,设
代入椭圆方程并化简得,       
,可得.       ( )
,                              ………7分
. 又点的距离为,   ………9分
,   ………11分
当且仅当,即时取等号(满足式),取得最大值.
此时所求直线l的方程为                             ………12分
考点:本题主要考查抛物线的标准方程,抛物线的几何性质,椭圆的标准方程,直线与椭圆的位置关系,基本不等式的应用。
点评:中档题,本题求椭圆的标准方程,运用的是“待定系数法”,注意明确焦点轴和p的值。研究直线与椭圆的位置关系,往往应用韦达定理,通过“整体代换”,简化解题过程,实现解题目的。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题13分)已知椭圆,椭圆的长轴为短轴,且与有相同的离心率.
(1)求椭圆的方程;
(2)设O为坐标原点,点A,B分别在椭圆上,,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知椭圆C:(.

(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点的直线与椭圆C交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率k的取值范围;
(3)如图,过原点任意作两条互相垂直的直线与椭圆()相交于四点,设原点到四边形一边的距离为,试求满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆的离心率,过点的直线与原点的距离为。⑴求椭圆的方程;⑵已知定点,若直线与椭圆交于两点,问:是否存在的值,使以为直径的圆过点?请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在平面直角坐标系中,椭圆的焦距为2,且过点.
求椭圆的方程;
若点分别是椭圆的左、右顶点,直线经过点且垂直于轴,点是椭圆上异于的任意一点,直线于点

(ⅰ)设直线的斜率为直线的斜率为,求证:为定值;
(ⅱ)设过点垂直于的直线为.求证:直线过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,点,直线都是圆的切线(点不在轴上)。
⑴求过点且焦点在轴上抛物线的标准方程;
⑵过点作直线与⑴中的抛物线相交于两点,问是否存在定点,使.为常数?若存在,求出点的坐标与常数;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知m>1,直线,椭圆C:分别为椭圆C的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知椭圆中心在原点,焦点在x轴上,离心率,过椭圆的右焦点且垂直于长轴的弦长为
(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线与椭圆相交于两点,且坐标原点到直线的距离为的大小是否为定值?若是求出该定值,不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,且过点为其右焦点.
(1)求椭圆的方程;
(2)设过点的直线与椭圆相交于两点(点两点之间),若的面积相等,试求直线的方程.

查看答案和解析>>

同步练习册答案