精英家教网 > 高中数学 > 题目详情

【题目】如图,在等腰梯形ABCD中,ADBCABBCCD1AD2,点EF分别在线段ABAD上,且EFCD,将△AEF沿EF折起到△MEF的位置,并使平面MEF⊥平面BCDFE,得到几何体MBCDEF,则折叠后的几何体的体积的最大值为_____.

【答案】

【解析】

,在等腰梯形中,,则是边长为的等边三角形,求出折叠后棱锥的高,把棱锥体积表示为的函数,利用导数求最值.

AEx(0<x≤1),

在等腰梯形ABCD中,由ADBCABBCCD1AD2,可得∠BAD60°

EFCD,可得△AEF是边长为x的等边三角形,

将△AEF沿EF折起到△MEF的位置,并使平面MEF⊥平面BCDFE

EF边上的高为

(0<x≤1).

0在(01]上恒成立,

在(01]上为增函数,

所以折叠后的几何体的体积的最大值为V(1).

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示

(1)由折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司2019年3月份的利润;

(2)甲公司新研制了一款产品,需要采购一批新型材料,现有两种型号的新型材料可供选择,按规定每种新型材料最多可使用个月,但新材料的不稳定性会导致材料损坏的年限不相同,现对两种型号的新型材料对应的产品各件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:

使用寿命

材料类型

个月

个月

个月

个月

总计

如果你是甲公司的负责人,你会选择采购哪款新型材料?

参考数据:.参考公式:回归直线方程为,其中 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1所示,在等腰梯形ABCD中,,垂足为E沿EC折起到的位置,如图2所示,使平面平面ABCE.

1)连结BE,证明:平面

2)在棱上是否存在点G,使得平面,若存在,直接指出点G的位置不必说明理由,并求出此时三棱锥的体积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线yx2和点P01),若过某点C可作抛物线的两条切线,切点分别是AB,且满足,则ABC的面积为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,底面是平行四边形, 分别在棱上,且.

1)求证:平面

2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ex2mxn0x1),其中mnRe为自然对数的底数.

1)试讨论函数fx)的极值;

2)记函数gx)=exmx2nx10x1),且gx)的图象在点处的切的斜率为,若函数gx)存在零点,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中曲线的参数方程为为参数),以为极点,轴的正半轴为极轴,建立极坐标系,直线的极坐标方程为.

1)求曲线的普通方程以及直线的直角坐标方程;

2)将曲线向左平移2个单位,再将曲线上的所有点的横坐标缩短为原来的,得到曲线,求曲线上的点到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数上是减函数,求实数的最小值;

2)若存在,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x1|+|2x6|(xR),记f(x)的最小值为c.

1)求c的值;

2)若实数ab满足a>0,b>0a+b=c,求的最小值.

查看答案和解析>>

同步练习册答案