精英家教网 > 高中数学 > 题目详情

(本题满分12分)

已知动圆过点,且与相内切.

   (1)求动圆的圆心的轨迹方程;

   (2)设直线(其中与(1)中所求轨迹交于不同两点D,与双曲线交于不同两点,问是否存在直线,使得向量,若存在,指出这样的直线有多少条?若不存在,请说明理由.

解:(1)圆, 圆心的坐标为,半径

,∴点在圆内.       

设动圆的半径为,圆心为,依题意得,且

.                                             

∴圆心的轨迹是中心在原点,以两点为焦点,长轴长为的椭圆,设其方程为

,  则.∴

∴所求动圆的圆心的轨迹方程为.…………………………………4分

 (2)由 消去化简整理得:

,则……………………………………6分

. ①

 消去化简整理得:

,则,

. ② ……………………………………8分

,∴,即

.∴

解得……… 10分                                                                  

时,由①、②得 

Z,,∴的值为 ;

,由①、②得 

Z,,∴

∴满足条件的直线共有9条.………………………………………………12分


解析:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

( 本题满分12分 )
已知函数f(x)=cos4x-2sinxcosx-sin4x
(I)求f(x)的最小正周期;
(II)若x∈[0,
π2
]
,求f(x)的最大值,最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分12分)已知数列是首项为,公比的等比数列,,

,数列.

(1)求数列的通项公式;(2)求数列的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题

(本题满分12分,第1小题6分,第2小题6分)

已知集合A={x| | xa | < 2,xÎR },B={x|<1,xÎR }.

(1) 求AB

(2) 若,求实数a的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题

(本题满分12分)

设函数为常数),且方程有两个实根为.

(1)求的解析式;

(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题

(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)

如图所示,直二面角中,四边形是边长为的正方形,上的点,且⊥平面

(Ⅰ)求证:⊥平面

(Ⅱ)求二面角的大小;

(Ⅲ)求点到平面的距离.

 

查看答案和解析>>

同步练习册答案