【题目】已知抛物线与直线只有一个公共点,点是抛物线上的动点.
(1)求抛物线的方程;
(2)①若,求证:直线过定点;
②若是抛物线上与原点不重合的定点,且,求证:直线的斜率为定值,并求出该定值.
科目:高中数学 来源: 题型:
【题目】如图1,已知等边的边长为3,点,分别是边,上的点,且,.如图2,将沿折起到的位置.
(1)求证:平面平面;
(2)给出三个条件:①;②二面角大小为;③.在这三个条件中任选一个,补充在下面问题的条件中,并作答:在线段上是否存在一点,使直线与平面所成角的正弦值为,若存在,求出的长;若不存在,请说明理由.注:如果多个条件分别解答,按第一个解答给分
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x|+|x﹣1|.
(1)若f(x)≥|m﹣1|恒成立,求实数m的最大值M;
(2)在(1)成立的条件下,正实数a,b满足a2+b2=M,证明:a+b≥2ab.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正△ABC边长为3,点M,N分别是AB,AC边上的点,AN=BM=1,如图1所示.将△AMN沿MN折起到△PMN的位置,使线段PC长为,连接PB,如图2所示.
(Ⅰ)求证:平面PMN⊥平面BCNM;
(Ⅱ)若点D在线段BC上,且BD=2DC,求二面角M﹣PD﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱柱,底面为等腰梯形,;,侧面底面.
(1)在侧面中能否作一条直线使其与平行?如果能,请写出作图过程并给出证明;如果不能,请说明理由;
(2)求四面体的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com