精英家教网 > 高中数学 > 题目详情
2.函数f(x)=$\left\{\begin{array}{l}{log_{\frac{1}{2}}}^{(-x)},x<0\\ 3cos\frac{πx}{2},x≥0\end{array}$的图象上关于y轴对称的点共有(  )
A.2对B.3 对C.4 对D.5对

分析 由题意可知函数图象关于y轴对称点,就是把y=$3cos\frac{πx}{2}$的图象在x<0的部分画出,与y=log$\frac{1}{2}$(-x)的交点的个数,即可得到选项.

解答 解:函数f(x)=$\left\{\begin{array}{l}{log_{\frac{1}{2}}}^{(-x)},x<0\\ 3cos\frac{πx}{2},x≥0\end{array}$的图象上关于y轴对称的点的对数,
即y=$3cos\frac{πx}{2}$的图象与y=log$\frac{1}{2}$(-x),(x<0)的交点的个数,
在同一坐标系中画出y=$3cos\frac{πx}{2}$的图象与y=log$\frac{1}{2}$(-x)的图象如下图所示:

有图可得两个函数图象共有4个交点,
故函数f(x)=$\left\{\begin{array}{l}{log_{\frac{1}{2}}}^{(-x)},x<0\\ 3cos\frac{πx}{2},x≥0\end{array}$的图象上关于y轴对称的点共有4对,
故选:C

点评 本题考查的知识点是分段函数的应用,函数的零点与方程的根,是函数图象和性质的综合应用,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知曲线C的参数方程为$\left\{{\begin{array}{l}{x=\sqrt{5}cosθ}\\{y=sinθ}\end{array}}\right.$(θ为参数),直线l的极坐标方程为$ρcosθ=\sqrt{5}$,它们的交点在平面直角坐标系中的坐标为$({\sqrt{5},0})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某几何体的三视图如图所示,P是正方形ABCD对角线的交点,G是PB的中点.
(1)根据三视图,画出该几何体的直观图;
(2)在直观图中,①证明PD∥面AGC;②求此几何体的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.命题“?x∈R,|x-2|>3”的否定是:?x0∈R,|x0-2|≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数y=e|lnx|-|x-2|-ax有3个不同的零点(其中e为自然对数的底数),则实数a的取值范围是(  )
A.[1,+∞)B.(1,+∞)C.(0,1]D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C的对边分别为a,b,c,已知∠B=30°,△ABC的面积为$\frac{3}{2}$,则AC边上的中线BD的最小值$\frac{3+\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知20名学生某次数学考试成绩(单位:分)的频率分布直方图如下图所示.则成绩落在[50,60)与[60,70)中的学生人数分别为(  )
A.2,3B.2,4C.3,2D.4,2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{lgx,}&{x>0}\\{x+3,}&{x≤0}\end{array}\right.$,若f(a)+f(10)=0,则实数a的值为(  )
A.$\frac{1}{10}$B.-4C.-4或$\frac{1}{10}$D.-3或1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设F1,F2分别为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为2$\sqrt{3}$.则椭圆C的焦距(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案