【题目】如图,棱长为a的正方体ABCD﹣A1B1C1D1中,点M,N,E分别是棱A1B1 , A1D1 , C1D1的中点.
(1)过AM作一平面,使其与平面END平行(只写作法,不需要证明);
(2)在如图的空间直角坐标系中,求直线AM与平面BMND所成角的正弦值.
【答案】
(1)解:连结AC、MC,平面AMC是所求平面
(2)解:如图空间直角坐标系O﹣xyz
则A(0,0,0),M( a,0,a),B(a,0,0),D(0,a,0),N(0, a,a)
=(﹣ a,0,a), =(﹣a,a,0), =( a,0,a)
设平面BMND得法向量n=(x,y,z)
则 n=(2,2,1)cos< ,n>= = 设直线AM与平面BMND所成角为θ
则,sinθ=|cos< ,n>|=
直线AM与平面BMND所成角的正弦值为
【解析】【(1)连结AC、MC,平面AMC是所求平面;(2)建立空间直角坐标系,求出平面的法向量,即可求直线AM与平面BMND所成角的正弦值.
【考点精析】利用平面与平面平行的判定和空间角的异面直线所成的角对题目进行判断即可得到答案,需要熟知判断两平面平行的方法有三种:用定义;判定定理;垂直于同一条直线的两个平面平行;已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则.
科目:高中数学 来源: 题型:
【题目】如图所示,圆锥SO的轴截面△SAB是边长为4的正三角形,M为母线SB的中点,过直线AM作平面β⊥面SAB,设β与圆锥侧面的交线为椭圆C,则椭圆C的短半轴长为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.
(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补出完整函数f(x)的图象,并根据图象写出函数f(x)的增区间;
(2)写出函数f(x)的解析式和值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,則第20行从左至右的第4个数字应是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
温差 | 10 | 11 | 13 | 12 | 8 |
发芽数/颗 | 23 | 25 | 30 | 26 | 16 |
(1)从这5天中任选2天,求这2天发芽的种子数均不小于25的概率;
(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
附:回归直线的斜率和截距的最小二乘估计公式分别为, .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】顶点在原点,焦点在x轴正半轴的抛物线,经过点(3,6),
(1)求抛物线截直线y=2x﹣6所得的弦长.
(2)讨论直线y=kx+1与抛物线的位置关系,并求出相应的k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①直线l的方向向量为 =(1,﹣1,2),直线m的方向向量 =(2,1,﹣ ),则l与m垂直;
②直线l的方向向量 =(0,1,﹣1),平面α的法向量 =(1,﹣1,﹣1),则l⊥α;
③平面α、β的法向量分别为 =(0,1,3), =(1,0,2),则α∥β;
④平面α经过三点A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),向量 =(1,u,t)是平面α的法向量,则u+t=1.
其中真命题的是 . (把你认为正确命题的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+2x|x﹣a|,其中a∈R.
(1)当a=﹣1时,在所给坐标系中作出f(x)的图象;
(2)对任意x∈[1,2],函数g(x)=﹣x+14的图象恒在函数f(x)图象的上方,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com