精英家教网 > 高中数学 > 题目详情

【题目】某校名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是,,,.

求图中的值;

根据频率分布直方图,估计这名学生的平均分;

若这名学生的数学成绩中,某些分数段的人数与英语成绩相应分数段的人数之比如表所示,求英语成绩在的人数.

分数段

:5

1:2

1:1

【答案】(1)(2)平均数为(3)

【解析】

(1)根据面积之和为1列等式解得.

(2)频率分布直方图中每一个小矩形的面积乘以底边中点的横坐标之和即为平均数,

(3)先计算出各分数段上的成绩,再根据比值计算出相应分数段上的英语成绩人数相加即可.

解:,

解得.

频率分布直方图中每一个小矩形的面积乘以底边中点的横坐标之和即为平均数,

即估计平均数为.

由频率分布直方图可求出这名学生的数学成绩在,,的分别有,,,按照表中给的比例,则英语成绩在,,的分别有,,,所以英语成绩在的有.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】随着人工智能的兴起,越来越多的事物可以用机器人替代,某学校科技小组自制了一个机器人小青,共可以解决函数、解析几何、立体几何三种题型已知一套试卷共有该三种题型题目20道,小青解决一个函数题需要6分钟,解决一个解析几何题需要3分钟,解决一个立体几何题需要9分钟已知小青一次开机工作时间不能超过90分钟,若答对一道函数题给8分,答对一道解析几何题给6分,答对一道立体几何题给9该兴趣小组通过合理分配题目可使小青在一次开机工作时间内做这套试卷得分最高,则最高得分为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵中, ,则阳马的外接球的表面积是( )

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/30/1913191114645504/1914064210190336/STEM/70d44ba6321c44a9bcc99e6010bf5643.png]

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 过点,且两个焦点的坐标分别为 .

(1)求的方程;

(2)若 上的三个不同的点, 为坐标原点,且,求证:四边形的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵中, ,则阳马的外接球的表面积是( )

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/30/1913191114645504/1914064210190336/STEM/70d44ba6321c44a9bcc99e6010bf5643.png]

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱底面 为棱中点.

I)求证: 平面

II)求证: 平面

III)在棱的上是否存在点,使得平面平面?如果存在,求此时的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,平面多边形中,AE=ED,AB=BD,且,现沿直线,将折起,得到四棱锥.

(1)求证: ;

(2)若,求PD与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义域为的函数的导函数,,则的解集为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的焦点为(,0)(0),且椭圆C过点M(4,1),直线l不过点M,且与椭圆交于不同的两点A,B.

(1)求椭圆C的标准方程;

(2)求证:直线MA,MB与x轴总围成一个等腰三角形.

查看答案和解析>>

同步练习册答案