【题目】已知函数 f(x)=,x∈R,其中 a>0.
(Ⅰ)求函数 f(x)的单调区间;
(Ⅱ)若函数 f(x)(x∈(-2,0))的图象与直线 y=a 有两个不同交点,求 a 的取值范围.
【答案】(1)函数 f(x)的单调递增区间是(-∞,-1),(a,+∞);单调递减区间是(-1,a).
(2)(0, ).
【解析】
分析:(1)先求函数的导函数,找出导函数的零点,把定义域由零点分成几个区间判断导函数在各区间内的符号,从而得到原函数在个区间内的单调性;(2)根据(1)中求出的单调区间,说明函数在区间(-2,-1)内单调递增,在区间(-1,0)内单调递减,结合函数零点和方程根的转化列式可求a的范围.
详解:
(Ⅰ)f′(x)=+(1-a)x-a=(x+1)(x-a).
由 f′(x)=0,得=-1,=a>0.
当 x 变化时,f′(x),f(x)的变化情况如下表:
x | (-∞,-1) | -1 | (-1,a) | a | (a,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 极大值 | 极小值 |
故函数 f(x)的单调递增区间是(-∞,-1),(a,+∞);
单调递减区间是(-1,a).
(Ⅱ) 令 g(x)=f(x)-a,x∈(-2,0),
则函数 g(x)在区间(-2,0)内有两个不同的零点,
由(Ⅰ)知 g (x)在区间(-2,-1)内单调递增,在区间(-1,0)内单调递减,
从而
解得 0<a<. 所以 a 的取值范围是(0, )
科目:高中数学 来源: 题型:
【题目】下列说法中正确的是 ( )
①相关系数用来衡量两个变量之间线性关系的强弱, 越接近于,相关性越弱;
②回归直线一定经过样本点的中心;
③随机误差满足,其方差的大小用来衡量预报的精确度;
④相关指数用来刻画回归的效果, 越小,说明模型的拟合效果越好.
A. ①② B. ③④ C. ①④ D. ②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】min(a,b)表示a,b中的最小值,执行如图所示的程序框图,若输入的a,b值分别为4,10,则输出的min(a,b)值是( )
A.0
B.1
C.2
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,圆:.
(Ⅰ)若圆C与x轴相切,求圆C的方程;
(Ⅱ)已知,圆与x轴相交于两点(点在点的左侧).过点任作一条直线与圆:相交于两点A,B.问:是否存在实数a,使得=?若存在,求出实数a的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的前n项和为Sn , 且满足2Sn=2n+1+λ(λ∈R). (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn= ,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的参数方程为 (φ为参数),以原点为极点,x轴的非负半轴为极轴建立极坐标系. (Ⅰ)求曲线C的极坐标方程;
(Ⅱ)已知倾斜角为135°且过点P(1,2)的直线l与曲线C交于M,N两点,求 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】规定:投掷飞镖3次为一轮,若3次中至少两次投中8环以上为优秀.根据以往经验某选手投掷一次命中8环以上的概率为 .现采用计算机做模拟实验来估计该选手获得优秀的概率:用计算机产生0到9之间的随机整数,用0,1表示该次投掷未在 8 环以上,用2,3,4,5,6,7,8,9表示该次投掷在 8 环以上,经随机模拟试验产生了如下 20 组随机数: 907 966 191 925 271 932 812 458 569 683
031 257 393 527 556 488 730 113 537 989
据此估计,该选手投掷 1 轮,可以拿到优秀的概率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南宋数学家秦九韶(约公元1202﹣1261年)给出了求n(n∈N*)次多项式anxn+an﹣1xn﹣1+…+a1x+a0 , 当x=x0时的值的一种简捷算法.该算法被后人命名为“秦九韶算法”,例如,可将3次多项式改写为a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0 , 然后进行求值.运行如图所示的程序框图,能求得多项式( )的值.
A.x4+x3+2x2+3x+4
B.x4+2x3+3x2+4x+5
C.x3+x2+2x+3
D.x3+2x2+3x+4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com