精英家教网 > 高中数学 > 题目详情

【题目】正方体ABCD - A1B1C1D1的棱长为2 EFG分别为BCCC1BB1的中点,则(

A.直线与直线AF垂直B.直线A1G与平面AEF平行

C.平面截正方体所得的截面面积为D.C与点G到平面AEF的距离相等

【答案】BC

【解析】

对选项A,取中点,则在平面上的投影,由不垂直,得不垂直,故A错误.对选项B,取的中点,连接,易证平面平面,从而得到平面,故B正确.对选项C,连接,得到

平面为平面截正方体所得的截面,再计算其面积即可得到C正确,对选项D,利用反正法即可得到D错误.

对选项A,如图所示:

中点,连接.

在平面上的投影,

因为不垂直,所以不垂直,故A错误.

对选项B,取的中点,连接,如图所示:

因为平面平面,所以平面

因为平面平面,所以平面

又因为平面

所以平面平面.

因为平面,所以平面,故B正确.

对选项C,连接,如图所示:

因为,所以平面为平面截正方体所得的截面.

,所以四边形为等腰梯形,

高为.

C正确.

对选项D,连接,如图所示:

假设点与点到平面的距离相等,即平面必过的中点,

不是的中点,则假设不成立,故D错误.

故选:BC

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,直线的参数方程为为参数),以原点为极点, 轴的正半轴为极轴,以相同的长度单位建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求直线的极坐标方程和曲线的直角坐标方程;

(Ⅱ)已知,直线与曲线交于 两点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为 (为参数)以坐标原点为极点, 轴正半轴为极轴建立极坐标系.

(1)求曲线的普通方程和极坐标方程;

(2)直线的极坐标方程为,若的公共点为,且是曲线的中心,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某教育主管部门到一所中学检查高三年级学生的体质健康情况,从中抽取了名学生的体质测试成绩,得到的频率分布直方图如图1所示,样本中前三组学生的原始成绩按性别分类所得的茎叶图如图2所示.

(Ⅰ)求 的值;

(Ⅱ)估计该校高三学生体质测试成绩的平均数和中位数

(Ⅲ)若从成绩在的学生中随机抽取两人重新进行测试,求至少有一名男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在空间中,下列命题正确的是

A.如果一个角的两边和另一角的两边分别平行,那么这两个角相等

B.两条异面直线所成的有的范围是

C.如果两个平行平面同时与第三个平面相交,那么它们的交线平行

D.如果一条直线和平面内的一条直线平行,那么这条直线和这个平面平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,∠ABC=BCD=90°,EPB的中点。

1)证明:CE∥面PAD.

2)若直线CE与底面ABCD所成的角为45°,求四棱锥P-ABCD的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,对称轴为坐标轴,椭圆与直线相切于点

(1)求椭圆的标准方程;

(2)若直线 与椭圆相交于两点( 不是长轴端点),且以为直径的圆过椭圆轴正半轴上的顶点,求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【选修4-4:坐标系与参数方程】

在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C ,过点的直线l的参数方程为: (t为参数),直线l与曲线C分别交于MN两点.

(1)写出曲线C的直角坐标方程和直线l的普通方程;

(2)|PM ||MN||PN|成等比数列,求a的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《汉字听写大会》不断创收视新高,为了避免“书写危机”弘扬传统文化,某市大约10万名市民进行了汉字听写测试.现从某社区居民中随机抽取50名市民的听写测试情况,发现被测试市民正确书写汉字的个数全部在之间,将测试结果按如下方式分成六组:第一组,第二组,…,第六组,如图是按上述分组方法得到的频率分布直方图.

(1)若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第1组或第4组的概率;

(2)已知第5,6两组市民中有3名女性,组织方要从第5,6两组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性市民的概率.

查看答案和解析>>

同步练习册答案