精英家教网 > 高中数学 > 题目详情
函数g(x)=x3+mx2+nx+m2在x=1处有极值10,则m,n的值是(  )
分析:对函数进行求导,根据函数f(x)在x=-1有极值0,可以得到f(-1)=0,f′(-1)=0,代入求解即可
解答:解:∵g(x)=x3+mx2+nx+m2∴g′(x)=3x2+2mx+n
依题意可得
g(1)=10
g(1)=0
1+m+n+m2=10
3+2m+n=0        
联立可得
m=4
n=-11
m=-3
n=3

当m=-3,n=3时,f′(x)=3x2-6x+3=3(x-1)2≥0,函数在R上单调递增,函数无极值,舍
故选B.
点评:本题主要考查函数在某点取得极值的性质:若函数在取得极值⇒f′(x0)=0.反之结论不成立,即函数有f′(x0)=0,函数在该点不一定是极值点,(还得加上在两侧有单调性的改变),属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•上海)已知真命题:“函数y=f(x)的图象关于点P(a,b)成中心对称图形”的充要条件为“函数y=f(x+a)-b 是奇函数”.
(1)将函数g(x)=x3-3x2的图象向左平移1个单位,再向上平移2个单位,求此时图象对应的函数解析式,并利用题设中的真命题求函数g(x)图象对称中心的坐标;
(2)求函数h(x)=log2
2x4-x
 图象对称中心的坐标;
(3)已知命题:“函数 y=f(x)的图象关于某直线成轴对称图象”的充要条件为“存在实数a和b,使得函数y=f(x+a)-b 是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-ax-3(a∈R).
(1)若a=-1,求函数f(x)的单调区间并比较f(x)与f(1)的大小关系;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈[1,2],函数g(x)=x3+x2[f′(x)+
m
2
]在区间(t,3)上总不是单调函数,求m的取值范围;
(3)若n≥2,n∈N+,试猜想
ln2
2
×
ln3
3
×
ln4
4
×…×
lnn
n
1
n
的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4x2-72-x
,(x∈[0,1])

(1)求f(x)的值域A
(2)设a≥1,函数g(x)=x3-3ax-2a,x∈[0,1]的值域为B,若A⊆B成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高一年级数学兴趣小组的同学经过研究,证明了以下两个结论是完全正确的:①若函数y=f(x)的图象关于点P(a,b)成中心对称图形,则函数y=f(x+a)-b是奇函数;②若函数y=f(x+a)-b是奇函数,则函数y=f(x)的图象关于点P(a,b)成中心对称图形.请你利用他们的研究成果完成下列问题:
(1)将函数g(x)=x3+6x2的图象向右平移2个单位,再向下平移16个单位,求此时图象对应的函数解释式,并利用已知条件中的结论求函数g(x)图象对称中心的坐标;
(2)求函数h(x)=log2
1-x4x
图象对称中心的坐标,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M是同时满足下列两个性质的函数f(x)的全体:①f(x)在其定义域上是单调函数;②在f(x)的定义域内存在闭区间[a,b],使得f(x)在[a,b]上的最小值是
a
2
,最大值是
b
2
.请解答以下问题:
(1)判断函数g(x)=-x3是否属于集合M?并说明理由,若是,请找出满足②的闭区间[a,b];
(2)若函数h(x)=
x-1
+t∈M
,求实数t的取值范围.

查看答案和解析>>

同步练习册答案