精英家教网 > 高中数学 > 题目详情

【题目】判断下列命题是全称命题还是特称命题,并判断其真假;写出这些命题的否定并判断真假.
(1)三角形的内角和为180°;
(2)每个二次函数的图象都开口向下;
(3)存在一个四边形不是平行四边形;
(4);
(5).

【答案】
(1)

【解答】

解:是全称命题且为真命题.

命题的否定:三角形的内角和不全为180°,

即存在一个三角形,它的内角和不等于180°,为假命题.


(2)

【解答】

解:是全称命题且为假命题.

命题的否定:存在一个二次函数的图象开口不向下,为真命题.


(3)

【解答】

解:是特称命题且为真命题.

命题的否定:所有的四边形都是平行四边形,为假命题.


(4)

【解答】

解:是全称命题且为真命题.

由于 都有 ,故 , p 为真命题;

为假命题


(5)

【解答】

解:是特称命题且为假命题.

因为不存在一个实数 x ,使 成立, p 为假命题;

为真命题.


【解析】命题的否定要与否命题区别开来,全称命题的否定是特称命题,而特称命题的否定是全称命题.
【考点精析】解答此题的关键在于理解全称命题的相关知识,掌握全称命题,它的否定;全称命题的否定是特称命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知函数 ,且函数处的切线平行于直线

(Ⅰ)实数的值;(Ⅱ)若在)上存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,M,N,K分别是正方体ABCD﹣A1B1C1D1的棱AB,CD,C1D1的中点.

(1)求证:AN∥平面A1MK;
(2)求证:平面A1B1C⊥平面A1MK.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1 (a>b>0)的离心率为e=,过C1的左焦点F1的直线l:x-y+2=0,直线l被圆C2 (r>0)截得的弦长为2

(1)求椭圆C1的方程:

(2)设C1的右焦点为F2,在圆C2上是否存在点P,满足|PF1|=|PF2|,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题p:函数f(x)=lg(ax2x a)的定义域为R;命题q:不等式3x-9x<a对一切正实数均成立.如果命题“p∨q”为真命题,“p∧q”为假命题,求实数a的取值范围( ).
A.0≤a<1
B.0≤a
C.a≤1
D.0≤a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个命题p:sinx+cosx>m,q:x2+mx+1>0.如果对任意x∈R,p与q有且仅有一个是真命题.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线),焦点为,直线交抛物线两点,的中点,且

(1)求抛物线的方程;

(2)若,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数y=sin(x+ )的图象,只需把y=sinx图象上所有的点(
A.向左平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向右平移 个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对新研发的一种产品进行合理定价,随机抽取了6个试销售数据,得到第i个销售单价xi(单位:元)与销售yi(单位:件)的数据资料,算得
(1)求回归直线方程
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入﹣成本) 附:回归直线方程 中, = = ,其中 是样本平均值.

查看答案和解析>>

同步练习册答案