精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=
(1)证明f(x)是奇函数;
(2)判断f(x)的单调性,并用定义证明
(3)求f(x)在[1,2]上的最值.

【答案】解:(1)由于函数f(x)=的定义域为R,f(﹣x)===﹣f(x),
故函数f(x)为奇函数.
(2)由于f(x)===1﹣,设x1<x2 , 则
根据f(x1)﹣f(x2)=[1﹣]﹣[1﹣]=
==<0,∴f(x1)<f(x2),
故函数f(x)在R上为增函数.
(3)在[1,2]上,函数f(x)为增函数,故当x=1时,函数f(x)取得最小值为
当x=2时,函数f(x)取得最大值为
【解析】(1)由条件利用奇函数的定义进行判断,可得结论.
(2)由条件利用函数的单调性的定义进行证明,可得结论.
(3)由条件利用函数的单调性求得f(x)在[1,2]上的最值.
【考点精析】解答此题的关键在于理解奇偶性与单调性的综合的相关知识,掌握奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性,以及对三角函数的最值的理解,了解函数,当时,取得最小值为;当时,取得最大值为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某蛋糕店每天做若干个生日蛋糕,每个制作成本为50元,当天以每个100元售出,若当天白天售不出,则当晚以30元/个价格作普通蛋糕低价售出,可以全部售完.

(1)若蛋糕店每天做20个生日蛋糕,求当天的利润(单位:元)关于当天生日蛋糕的需求量(单位:个, )的函数关系;

(2)蛋糕店记录了100天生日蛋糕的日需求量(单位:个)整理得下表:

(ⅰ)假设蛋糕店在这100天内每天制作20个生日蛋糕,求这100天的日利润(单位:元)的平均数;

(ⅱ)若蛋糕店一天制作20个生日蛋糕,以100天记录的各需求量的频率作为概率,求当天利润不少于900元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果数据x1 , x2 , …,xn的平均数是 ,方差是S2 , 则2x1+3,2x2+3,…,2xn+3的平均数和方差分别是(
A. 和S
B.2 +3和4S2
C. 和S2
D. 和4S2+12S+9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标平面中, 的两个顶点为,平面内两点同时满足:①;②;③

(1)求顶点的轨迹的方程;

(2)过点作两条互相垂直的直线,直线与点的轨迹相交弦分别为,设弦的中点分别为

①求四边形的面积的最小值;

②试问:直线是否恒过一个定点?若过定点,请求出该定点,若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱 中, , , 是棱上的动点.

证明:

若平面分该棱柱为体积相等的两个部分,试确定点的位置,并求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣2x+4my+4m2=0,圆C1:x2+y2=25,以及直线l:3x﹣4y﹣15=0.
(1)求圆C1:x2+y2=25被直线l截得的弦长;
(2)当m为何值时,圆C与圆C1的公共弦平行于直线l;
(3)是否存在m,使得圆C被直线l所截的弦AB中点到点P(2,0)距离等于弦AB长度的一半?若存在,求圆C的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中为自然对数的底数,其图象与轴交于 两点,且

(Ⅰ)求实数的取值范围;

(Ⅱ)证明: 为函数的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的方程为,点是抛物线上到直线距离最小的点,点是抛物线上异于点的点,直线与直线交于点,过点轴平行的直线与抛物线交于点.

(Ⅰ)求点的坐标;

(Ⅱ)证明直线恒过定点,并求这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x|x},集合B={x|x≤1},那么U(A∩B)等于(  )
A.{x|x或x>1}
B.{x|x1}
C.{x|x≤或x1}
D.{x|≤x≤1}

查看答案和解析>>

同步练习册答案