【题目】在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是____________.
【答案】
【解析】∵圆C的方程可化为(x-4)2+y2=1,∴圆C的圆心为(4,0),半径为1.由题意知,直线y=kx-2上至少存在一点A(x0,kx0-2),以该点为圆心,1为半径的圆与圆C有公共点,∴存在x0∈R,使得AC≤1+1成立,即ACmin≤2.
∵ACmin即为点C到直线y=kx-2的距离,
∴≤2,解得0≤k≤.∴k的最大值是.
【题型】填空题
【结束】
15
【题目】在平面直角坐标系中,直线.
(1)若直线与直线平行,求实数的值;
(2)若, ,点在直线上,已知的中点在轴上,求点的坐标.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2 sin( ωx)cos( ωx)+2cos2( ωx)(ω>0),且函数f(x)的最小正周期为π.
(1)求ω的值;
(2)求f(x)在区间 上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 , ( 为自然对数的底数).
(1)设曲线 在 处的切线为 ,若 与点 的距离为 ,求 的值;
(2)若对于任意实数 , 恒成立,试确定 的取值范围;
(3)当 时,函数 在 上是否存在极值?若存在,请求出极值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的对边分别为a,b,c,若a2+c2+ ac=b2 , sinA= .
(1)求sinC的值;
(2)若a=2,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线 的参数方程 ( 为参数),曲线 的极坐标方程为 .
(1)将曲线 的参数方程化为普通方程,将曲线 的极坐标方程化为直角坐标方程;
(2)试问曲线 , 是否相交?若相交,请求出公共弦的长;若不相交,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项不为零的数列{an}的前n项和为Sn , 且a1=1,Sn=panan+1(n∈N*),p∈R.
(1)若a1 , a2 , a3成等比数列,求实数p的值;
(2)若a1 , a2 , a3成等差数列,
①求数列{an}的通项公式;
②在an与an+1间插入n个正数,共同组成公比为qn的等比数列,若不等式(qn)(n+1)(n+a)≤e对任意的n∈N*恒成立,求实数a的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系xoy中,直线l的参数方程为 (t为参数, ),以坐标原点o为极点,x轴的正半轴为极轴,并取相同的长度单位,建立极坐标系.曲线
(1)若直线l曲线 相交于点 , , ,证明: 为定值;
(2)将曲线 上的任意点 作伸缩变换 后,得到曲线 上的点 ,求曲线 的内接矩形 周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设区间D=[﹣3,3],定义在D上的函数f(x)=ax3+bx+1(a>0,b∈R),集合A={a|x∈D,f(x)≥0}.
(1)若b= ,求集合A;
(2)设常数b<0 ①讨论f(x)的单调性;
②若b<﹣1,求证:A=.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的奇函数f(x),当x≥0时,f(x)= ,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为( )
A.3a﹣1
B.1﹣3a
C.3﹣a﹣1
D.1﹣3﹣a
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com