µ±Ìì´¦·£½ð¶îx£¨µ¥Î»£ºÔª£© | 0 | 5 | 10 | 15 | 20 |
µ±Ìì´³ºìµÆµÄÈËÊýy | 80 | 50 | 40 | 20 | 10 |
·ÖÎö £¨1£©ÓÉÒÑÖªÇó³ö$\overline{x}$£¬$\overline{y}$£¬$\sum _{i=1}^{5}$xiyi£¬$\sum _{i=1}^{5}$${x}_{i}^{2}$£¬´úÈë»Ø¹éϵÊý¹«Ê½£¬Çó³ö»Ø¹éϵÊý£¬¿ÉµÃ»Ø¹é·½³Ì£»
£¨2£©ÓÉÒÑÖª¿ÉµÃÿÈË´³ºìµÆµÄ¸ÅÂÊΪ$\frac{1}{5}$£¬½ø¶øµÃµ½XµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®
½â´ð ½â£º£¨1£©ÓÉÒÑÖª¿ÉµÃ£º$\overline{x}$=$\frac{1}{5}$£¨0+5+10+15+20£©=10£¬$\overline{y}$=$\frac{1}{5}$£¨80+50+40+20+10£©=40£¬
$\sum _{i=1}^{5}$xiyi=0¡Á80+5¡Á50+10¡Á40+15¡Á20+20¡Á10=1150£¬
$\sum _{i=1}^{5}$${x}_{i}^{2}$=0+25+100+225+400=750£¬
¡à$\hat{b}$=$\frac{\sum _{i=1}^{5}{x}_{i}{y}_{i}-5\overline{x}\overline{y}}{\sum _{i=1}^{5}{{x}_{i}}^{2}-5\overline{{x}^{2}}}$=$\frac{1150-5¡Á10¡Á40}{750-5¡Á10¡Á10}$=$-\frac{17}{5}$£¬
$\hat{a}$=$\overline{y}$-$\hat{b}$$\overline{x}$=40-£¨$-\frac{17}{5}$£©¡Á10=74£¬
¹Ê»Ø¹éÖ±Ïß·½³Ì$\hat{y}$=$-\frac{17}{5}$x+74£»
£¨2£©ÉÏÊö·¿ÚÿÌì¾¹ýµÄÐÐÈËԼΪ400ÈË£¬ÔÚÐÐ0Ôª´¦·£µÄÇé¿öÏ£¬´³ºìµÆµÄÈËÊýΪ80£¬
¹ÊÿÈË´³ºìµÆµÄ¸ÅÂÊΪ$\frac{1}{5}$£¬
¼Ç¼×¡¢ÒÒ¡¢±ûÈýÈËÖд³ºìµÆµÄÈËÊýΪX£¬ÔòXµÄÈ¡Öµ¿ÉÄÜΪ£º0£¬1£¬2£¬3£¬
ÆäÖÐP£¨X=0£©=$£¨1-\frac{1}{5}£©^{3}$=$\frac{64}{125}$£¬
P£¨X=1£©=${C}_{3}^{1}$${\frac{1}{5}£¨1-\frac{1}{5}£©}^{2}$=$\frac{48}{125}$£¬
P£¨X=2£©=${C}_{3}^{2}$${£¨\frac{1}{5}£©}^{2}$${£¨1-\frac{1}{5}£©}^{\;}$=$\frac{12}{125}$£¬
P£¨X=3£©=${£¨\frac{1}{5}£©}^{3}$=$\frac{1}{125}$£¬
XµÄ·Ö²¼ÁÐΪ£º
X | 0 | 1 | 2 | 3 |
P | $\frac{64}{125}$ | $\frac{48}{125}$ | $\frac{12}{125}$ | $\frac{1}{125}$ |
µãÆÀ ±¾Ì⿼²éÏßÐԻع鷽³Ì£¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁÐÓëÆÚÍû£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | £¨0£¬$\frac{1}{2}$£© | B£® | £¨-¡Þ£¬0£©¡È£¨$\frac{1}{2}$£¬+¡Þ£© | C£® | £¨$\frac{1}{2}$£¬+¡Þ£© | D£® | £¨$\frac{1}{2}$£¬$\frac{\sqrt{2}+1}{4}$] |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | a£¾1 | B£® | a¡Ü1 | C£® | a£¼-1 | D£® | a¡Ü-1 |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com