精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知曲线的参数方程为为参数).以平面直角坐标系的原点为极点, 轴正半轴为极轴,取相同的单位长度建立极坐标系,直线 的极坐标方程为 .

(1)试写出直线的直角坐标方程和曲线的普通方程;

(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.

【答案】(1) (2)点

【解析】试题分析: 根据把直线的极坐标方程化为直角坐标方程,利用同角三角函数的基本关系把曲线的参数方程化为直角坐标方程;

设点的坐标,求得点到直线的距离为,利用正弦函数的值域求得的最大值。

解析;(1)由题意知,直线的直角坐标方程为:

曲线的参数方程为为参数)

曲线的普通方程为

(2)设点的坐标,则点到直线的距离为

∴当时,点,此时

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinx+1. (Ⅰ)设ω为大于0的常数,若f(ωx)在区间 上单调递增,求实数ω的取值范围;
(Ⅱ)设集合 ,B={x||f(x)﹣m|<2},若A∪B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)对任意的实数满足:f(x+3)=﹣ ,且当﹣3≤x<﹣1时,f(x)=﹣(x+2)2 , 当﹣1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2016)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA,PB是圆C:x2+y2﹣2y=0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k的值为(
A.3
B.
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四边形ABCD满足AD∥BC,BA=AD=DC= BC=a,E是BC的中点,将△BAE沿着AE翻折成△B1AE,使面B1AE⊥面AECD,F,G分别为B1D,AE的中点.

(1)求三棱锥E﹣ACB1的体积;
(2)证明:B1E∥平面ACF;
(3)证明:平面B1GD⊥平面B1DC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,圆的极坐标方程为,若以极点为原点,极轴所在的直线为轴建立平面直角坐标系.

(1)求圆的参数方程;

(2)在直线坐标系中,点是圆上的动点,试求的最大值,并求出此时点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,满足:a2+c2=b2+ ac
(1)求∠B 的大小;
(2)求 cosA+cosC 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2cosx(sinx﹣cosx)+1,x∈R.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间 上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数,记.

(1)求函数的定义域及其零点;

(2)若关于的方程在区间内仅有一解,求实数的取值范围.

查看答案和解析>>

同步练习册答案