【题目】如图,数轴x、y的交点为O,夹角为,与x轴、y轴正向同向的单位向量分别是,,由平面向量基本定理,对于平面内的任一向量,存在唯一的有序实数对,使得,我们把叫做点P在斜坐标系xOy中的坐标(以下各点的坐标都指在斜坐标系xOy中的坐标)
(1)若,为单位向量,且与的夹角为120°,求点P的坐标;
(2)若,点P的坐标为,求向量与的夹角;
(3)若,直线l经过点,求原点O到直线l的距离的最大值.
【答案】(1);(2);(3)
【解析】
(1)设出点的坐标,结合为单位向量,且与的夹角为120°,列等式求解即可;
(2)由题意求出,的值,再结合向量的夹角公式求解即可;
(3)由题意得到点A在直角坐标系下的坐标,再由两点的距离公式求解即可.
解:(1)当,为单位向量,且与的夹角为120°,
设,则,且,
即,代入运算可得,即;
(2)若,点P的坐标为,则,
则,
即,
又,
设向量与向量的夹角为,则,
即向量与的夹角为;
(3)当,直线l经过点,设点A在直角坐标系的坐标为,由题意可得,即点A在直角坐标系的坐标为,
又因为直线l经过点,
则原点O到直线l的距离取最大值时,直线l与垂直,且交于点,
即原点O到直线l的距离的最大值为.
科目:高中数学 来源: 题型:
【题目】某大学为调研学生在, 两家餐厅用餐的满意度,从在, 两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.
整理评分数据,将分数以10为组距分成6组: , , , , , ,得到餐厅分数的频率分布直方图,和餐厅分数的频数分布表:
定义学生对餐厅评价的“满意度指数”如下:
分数 | |||
满意度指数 |
(Ⅰ)在抽样的100人中,求对餐厅评价“满意度指数”为0的人数;
(Ⅱ)从该校在, 两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对餐厅评价的“满意度指数”比对餐厅评价的“满意度指数”高的概率;
(Ⅲ)如果从, 两家餐厅中选择一家用餐,你会选择哪一家?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C:(a>0,b>0)的离心率为,且
(1)求双曲线C的方程;
(2)已知直线与双曲线C交于不同的两点A,B且线段AB的中点在圆上,求m的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了选拔学生参加全市中学生物理竞赛,学校先从高三年级选取60名同学进行竞赛预选赛,将参加预选赛的学生成绩(单位:分)按范围,,,分组,得到的频率分布直方图如图:
(1)计算这次预选赛的平均成绩(同一组中的数据用该组区间的中点值作代表);
(2)若对得分在前的学生进行校内奖励,估计获奖分数线;
(3)若这60名学生中男女生比例为,成绩不低于60分评估为“成绩良好”,否则评估为“成绩一般”,试完成下面列联表,是否有的把握认为“成绩良好”与“性别”有关?
成绩良好 | 成绩一般 | 合计 | |
男生 | |||
女生 | |||
合计 |
附:,
临界值表:
0.10 | 0.05 | 0.010 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,圆的参数方程为(为参数),过点作斜率为的直线与圆交于,两点.
(1)若圆心到直线的距离为,求的值;
(2)求线段中点的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《九章算术》中记载了有关特殊几何体的定义:阳马指底面为矩形,一侧棱垂直于底面的四棱锥,堑堵指底面是直角三角形,且侧棱垂直于底面的三棱柱.
(1)某堑堵的三视图,如图1,网格中的每个小正方形的边长为1,求该堑堵的体积;
(2)在堑堵中,如图2,,若,当阳马的体积最大时,求二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组,,第五组.下图是按上述分组方法得到的频率分布直方图.按上述分组方法得到的频率分布直方图.
(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(2)设m,n表示该班某两位同学的百米测试成绩,且已知求事件“”发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列几个命题:①若,则;②“若,则互为相反数”的否命题“;③“若则”的逆命题;④“若,则互为倒数”的逆否命题. 其中真命题的序号__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com