6£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=$\frac{\sqrt{6}}{3}$£¬¹ýµãR£¨-1£¬0£©µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚP£¬QÁ½µã£¬ÇÒ$\overrightarrow{PR}$=2$\overrightarrow{RQ}$£®£¨1£©µ±Ö±ÏßlµÄÇãб½ÇΪ60¡ãʱ£¬ÇóÈý½ÇÐÎOPQµÄÃæ»ý£»
£¨2£©µ±Èý½ÇÐÎOPQµÄÃæ»ý×î´óʱ£¬ÇóÍÖÔ²CµÄ·½³Ì£®

·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍÖ±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x+1£©£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°$\overrightarrow{PR}$=2$\overrightarrow{RQ}$£¬È·¶¨P£¬Q×ø±êÖ®¼äµÄ¹Øϵ£¬±íʾ³öÃæ»ý£¬ÀûÓûù±¾²»µÈʽÇó³öS¡÷OPQµÄ×î´óÖµ£¬¼´¿ÉµÃµ½ÍÖÔ²µÄ·½³Ì£®

½â´ð ½â£º£¨1£©ÓÉe=$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$£¬¿ÉµÃc=$\frac{\sqrt{6}}{3}$a£¬b=$\frac{\sqrt{3}}{3}$a£¬
Ö±Ïßl£ºy=$\sqrt{3}$£¨x+1£©´úÈëÍÖÔ²·½³Ì¿ÉµÃ£¨b2+3a2£©x2+6a2x+3a2-a2b2=0£¬
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
¿ÉµÃx1+x2=-$\frac{6{a}^{2}}{{b}^{2}+3{a}^{2}}$=-$\frac{9}{5}$£¬x2x1=$\frac{3{a}^{2}-{a}^{2}{b}^{2}}{{b}^{2}+3{a}^{2}}$=$\frac{9-{a}^{2}}{10}$£¬
ÓÉ$\overrightarrow{PR}$=2$\overrightarrow{RQ}$£¬¿ÉµÃ-1-x1=2£¨x2+1£©£¬
½â·½³Ì¿ÉµÃx1=-$\frac{3}{5}$£¬x2=-$\frac{6}{5}$£¬
¼´ÓÐ|y1-y2|=$\sqrt{3}$|x1-x2|=$\frac{3\sqrt{3}}{5}$£¬
Èý½ÇÐÎOPQµÄÃæ»ýΪS=$\frac{1}{2}$|OR|•|y1-y2|=$\frac{1}{2}$¡Á1¡Á$\frac{3\sqrt{3}}{5}$=$\frac{3\sqrt{3}}{10}$£»
£¨2£©ÓÉ£¨1£©Öª£¬3b2=a2£¬¡àÍÖÔ²µÄ·½³ÌΪx2+3y2=3b2£¬¢Ù
ÏÔÈ»£¬Ö±ÏßlµÄбÂʲ»Îª0£»
ÈôÖ±ÏßlÓëxÖá´¹Ö±£¬´ËʱP£¬Q¹ØÓÚxÖá¶Ô³Æ£¬²»Âú×ã$\overrightarrow{PR}$=2$\overrightarrow{RQ}$£»
Òò´Ë£¬¿ÉÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x+1£©¢Ú£¬
½«¢Ú´úÈë¢ÙÖÐÕûÀíµÃ£¨3k2+1£©x2+6k2x+3k2-3b2=0£¬
ÒòΪֱÏßlÓëÍÖÔ²½»ÓÚP£¬QÁ½µã£¬ËùÒÔ¡÷=12£¨3k2b2-k2+b2£©£¾0£¬¢Û
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬Ôòx1+x2=-$\frac{6{k}^{2}}{1+3{k}^{2}}$¢Ü£¬x1x2=$\frac{3{k}^{2}-3{b}^{2}}{1+3{k}^{2}}$¢Ý
ÓÉ$\overrightarrow{PR}$=2$\overrightarrow{RQ}$£¬
µÃ£¨-x1-1£¬-y1£©=2£¨1+x2£¬y2£©£¬
¡à$\left\{\begin{array}{l}{-1-{x}_{1}=2£¨1+{x}_{2}£©}\\{-{y}_{1}=2{y}_{2}}\end{array}\right.$¢Þ
Óɢܢ޵Ãx1=$\frac{3-3{k}^{2}}{1+3{k}^{2}}$£¬x2=-$\frac{3+3{k}^{2}}{1+3{k}^{2}}$¢ß
¡àS¡÷OPQ=$\frac{1}{2}$|y1-y2|=$\frac{1}{2}$|k||x1-x2|=$\frac{3|k|}{1+3{k}^{2}}$=$\frac{3}{3|k|+\frac{1}{|k|}}$
¡Ü$\frac{3}{2\sqrt{3}}$=$\frac{\sqrt{3}}{2}$µ±ÇÒ½öµ±3|k|=$\frac{1}{|k|}$£¬¼´k2=$\frac{1}{3}$ʱ£¬µÈºÅ³ÉÁ¢£®
¡àk2=$\frac{1}{3}$ʱ£¬S¡÷OPQÈ¡µÃ×î´óÖµ£®
ÓÉ¢ßÇóµÃx1=1£¬x2=-2£¬´úÈë¢Ý£¬ÇóµÃb2=$\frac{5}{3}$£¬Âú×ã¢Û£®
¹ÊËùÇóÍÖÔ²µÄ·½³ÌΪx2+3y2=5£¬¼´$\frac{{x}^{2}}{5}$+$\frac{{3y}^{2}}{5}$=1£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÖ±ÏߺÍÍÖÔ²·½³ÌÁªÁ¢£¬ÓÉΤ´ï¶¨ÀíºÍÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬¿¼²éÈý½ÇÐεÄÃæ»ý¼°×î´óÖµ£¬×¢ÒâÔËÓûù±¾²»µÈʽ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Éèm£¬n£¬lΪ¿Õ¼ä²»ÖغϵÄÖ±Ïߣ¬¦Á£¬¦Â£¬¦ÃÊǿռ䲻ÖغϵÄƽÃ棬ÔòÏÂÁÐ˵·¨ÕýÈ·µÄ¸öÊýÊÇ1
¢Ùm¡Îl£¬n¡Îl£¬Ôòm¡În£»
¢Úm¡Íl£¬n¡Íl£¬Ôòm¡În£»
¢ÛÈôm¡Îl£¬m¡Î¦Á£¬Ôòl¡Î¦Á£»
¢ÜÈôl¡Îm£¬l?¦Á£¬m?¦Â£¬Ôò¦Á¡Î¦Â£»
¢ÝÈôm?¦Á£¬m¡Î¦Â£¬l?¦Â£¬l¡Î¦Á£¬Ôò¦Á¡Î¦Â

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÇóÏÂÁк¯ÊýµÄ×îСÕýÖÜÆÚ£º
£¨1£©f£¨x£©=cos£¨$\frac{¦Ðx}{2}$£©£»
£¨2£©f£¨x£©=sin£¨$\frac{¦Ð}{6}$-2x£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Ôڰ뾶ΪrµÄ°ëÔ²ÄÚ×÷Ò»ÄÚ½ÓÌÝÐΣ¬Ê¹Æäµ×Ϊֱ¾¶£¬ÆäËûÈý±ßΪԲµÄÏÒ£¬ÔòÌÝÐÎÃæ»ý×î´óʱ£¬ÆäÉϵ׳¤Îª£¨¡¡¡¡£©
A£®$\frac{r}{2}$B£®$\frac{\sqrt{3}}{2}$rC£®$\frac{\sqrt{3}}{3}$rD£®r

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªz=x2+$\frac{1}{2}$y2+3£¬ÆäÖÐx£¬yÂú×ã¹Øϵʽy2=4x£¬ÔòzµÄ×îСֵÊÇ3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=$\frac{1}{2}$£¬an=$\frac{{a}_{n-1}}{2-{a}_{n-1}}$£¨n¡Ý2£©£®
£¨1£©ÇóÖ¤£º{$\frac{1}{a{\;}_{n}}$-1}ΪµÈ±ÈÊýÁУ¬²¢Çó³ö{an}µÄͨÏʽ£»
£¨2£©Èôbn=$\frac{2n-1}{{a}_{n}}$£¬Çó{bn}µÄÇ°nÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Ð¡Ã÷ÀûÓÿÎÓàʱ¼äÊÕ¼¯·ÏÆ·£¬½«ÂôµÃµÄ28ԪǮ¹ºÂò5±¾´óС²»Í¬µÄ±Ê¼Ç±¾£¬Á½ÖֱʼDZ¾µÄÒ³ÊýºÍ¼Û¸ñÈç±í£º
´ó±Ê¼Ç±¾Ð¡±Ê¼Ç±¾
¼Û¸ñ£¨Ôª/±¾£©65
Ò³Êý£¨Ò³/±¾£©10060
СÃ÷¼Æ»®Âòµ½µÄ±Ê¼Ç±¾×ÜÒ³Êý²»µÍÓÚ340Ò³£¬ËûÓ¦µ±ÔõÑù¹ºÂò²ÅÄÜ»¨Ç®×îÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªÖ±Ïß¹ýµã£¨1£¬1£©£¬Ôò±»Ô²x2+y2=4½ØµÃµÄÏÒ³¤×î´óʱµÄÖ±Ïß·½³ÌΪx-y=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÔÚ60¡ã¶þÃæ½ÇM-¦Á-NÄÚÓÐÒ»µãP£¬Pµ½Æ½ÃæM¡¢Æ½ÃæNµÄ¾àÀë¾ùΪ2£¬ÇóµãPµ½Ö±ÏßaµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸