精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对的边分别为a,b,c,且csinB=bcos C=3.
(I)求b;
(Ⅱ)若△ABC的面积为
21
2
,求c.
考点:正弦定理,余弦定理
专题:计算题,解三角形
分析:(Ⅰ)由正弦定理得sinC=cosC,可得C=45°,由bcosC=3,即可求得b的值.
(Ⅱ)由S=
1
2
acsinB=
21
2
,csinB=3,可求得a,据余弦定理可得c2=a2+b2-2abcosC=25,即可求得c的值.
解答: 解:(Ⅰ)由正弦定理得sinCsinB=sinBcosC,
又sinB≠0,所以sinC=cosC,C=45°.
因为bcosC=3,
所以b=3
2
.…(6分)
(Ⅱ)因为S=
1
2
acsinB=
21
2
,csinB=3,
所以a=7.
据余弦定理可得c2=a2+b2-2abcosC=25,
所以c=5.…(12分)
点评:本题主要考查了正弦定理、余弦定理 面积公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某项工程的横道图如下.

(1)求完成这项工程的最短工期;
(2)画出该工程的网络图.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-
y2
2
=1,过点P(2,1)能否作一条直线l,与双曲线交于A,B两点,且点P是线段AB的中点?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的通项公式为an=(n+1)(
9
10
n(n∈N+),试问:该数列{an}有没有最大项?若有,求最大项的项数;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

讨论函数f(x)=
1-x2
的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

2sin2
π
12
-
3
cos
12
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数.东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率.
(I)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率;
(Ⅱ)设翻乏示一天中早高峰时间段发生拥堵的主干道入口个数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2+Dx-6y+1=0的周长被直线x-y+4=0平分,且圆C上恰有1个点到直线l:3x+4y+c=0的距离等于1,则c=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=cosx+sinx+cosxsinx的值域.

查看答案和解析>>

同步练习册答案