精英家教网 > 高中数学 > 题目详情
18.若函数f(x)在闭区间[-1,2]上的图象如图所示,则此函数的解析式为y=$\left\{\begin{array}{l}{x+1,-1≤x<0}\\{-\frac{1}{2}x,0≤x≤2}\end{array}\right.$.

分析 分段求出函数的表达式,即可求此函数的解析式.

解答 解:由题意,-1≤x<0时,直线的斜率为1,方程为y=x+1;
0≤x≤2时,直线的斜率为-$\frac{1}{2}$,方程为y=-$\frac{1}{2}$x,
∴函数的解析式为y=$\left\{\begin{array}{l}{x+1,-1≤x<0}\\{-\frac{1}{2}x,0≤x≤2}\end{array}\right.$,
故答案为:y=$\left\{\begin{array}{l}{x+1,-1≤x<0}\\{-\frac{1}{2}x,0≤x≤2}\end{array}\right.$

点评 本题考查求此函数的解析式,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设矩阵M=$[\begin{array}{l}{1}&{2}\\{x}&{y}\end{array}]$,N=$[\begin{array}{l}{2}&{4}\\{-1}&{-1}\end{array}]$,若MN=$[\begin{array}{l}{0}&{2}\\{5}&{13}\end{array}]$,求矩阵M的特征值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若方程x2-ax+2=0有且仅有一个根在区间(0,3)内,则a的取值范围是a=2$\sqrt{2}$或a>$\frac{11}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知集合A中的元素(x,y)在映射f下对应B中的元素(x+2y,2x-y),则B中元素(3,1)在A中的对应元素是(1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=ax5+bx3+cx-1,若f(-3)=5,则f(3)=-7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若i是虚数单位,
(1)已知复数Z=$\frac{5{m}^{2}}{1-2i}$-(1+5i)m-3(2+i)是纯虚数,求实数m的值.
(2)如不等式m2-(m2-3m)i<(m2-4m+3)i+10成立,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知定义在R上的函数f(x)对任意x,y∈R,总有f(x)+f(y)=f(x+y)+1,且当x>0时,f(x)>1.
( I)若令h(x)=f(x)-1,证明:函数h(x)为奇函数;
( II)证明:函数f(x)在R上是增函数;
( III)解关于x的不等式f(x2)-f(3tx)+f(2t2+2t-x)<1.其中t∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=ln x-$\frac{1}{2}$ax2-x,若x=1是f(x)的极值点,则a的值为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{x}{1+x}$.
(1)求f(2),f($\frac{1}{2}$),f(3)、f($\frac{1}{3}$)的值;
(2)由(1)中求得的结果,你能发现f(x)与f($\frac{1}{x}$)有什么关系?并证明你的发现;
(3)求f(1)+f(2)+f(3)+…+f(2016)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2016}$)的值.

查看答案和解析>>

同步练习册答案