精英家教网 > 高中数学 > 题目详情
(满分16分)
记函数f(x)的定义域为D,若存在,使成立,则称以为坐标的点为函数图象上的不动点。
(1)若函数的图象上有两个关于原点对称的不动点,求应满足的条件;
(2)下述结论“若定义在R上的奇函数f(x)的图象上存在有限个不动点,则不动点有奇数个”是否正确?若正确,请给予证明,并举出一例;若不正确,请举出一反例说明

(1)
(2)证明略

解:(1)由, …………………………………………2分
整理得   ……………………………………4分
由题意知方程(*)有两个互为相反数的根,所以………6分
,……………………………………………………8分
应满足……………………………………………………10分
(2)结论正确。……………………………………………………12分
证明:为奇函数,,取,得
即(0,0)为函数的一个不动点,设函数除0以外还有不动点

,故也为函数的不动点。…………………14分
综上,若定义在R上的奇函数图象上存在有限个不动点,则不动点有奇数个。
例如:。…………………………………………………16分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,当恒成立的a的最小值为k,存在n个
正数,且,任取n个自变量的值

(I)求k的值;
(II)如果
(III)如果,且存在n个自变量的值,使,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数在x=1处的切线方程为,则a,c的值分别为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知函数,存在实数满足下列条件:
;②;③
(1)证明:
(2)求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知一元二次方程的一个根在-2与-1之间,另一个根在1与2之间,试求点的轨迹及的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

方程的实数解的个数为(  )
                   

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若一元二次方程解为,则分解因式    

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

:函数的零点个数是(     )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点的坐标分别是. 直线相交于的,且它们的斜率之和是2,则点的轨迹方程为

查看答案和解析>>

同步练习册答案