精英家教网 > 高中数学 > 题目详情
(2013•惠州模拟)已知点(1,
1
3
)是函数f(x)=ax(a>0,且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足:Sn-Sn-1=
Sn
+
Sn-1
(n≥2).
(1)求数列{an}和{bn}的通项公式;
(2)若数列{cn}的通项cn=bn•(
1
3
)n
,求数列{cn}的前n项和Rn
(3)若数列{
1
bnbn+1
}前n项和为Tn,问Tn
1000
2009
的最小正整数n是多少?
分析:(1)由点(1,
1
3
)是函数f(x)=ax(a>0,且a≠1)的图象上一点,求出函数解析式,根据等比数列{an}的前n项和为f(n)-c,依次求出a1,a2,a3,然后由a22=a1a3求出c,则首项和公比可求,所以通项公式可求,再由数列{bn}(bn>0)的首项为c,且前n项和Sn满足:Sn-Sn-1=
Sn
+
Sn-1
(n≥2).展开等式左边约分后可得数列{
Sn
}为首项为1公差为1的等差数列,求出Sn后,由bn=Sn-Sn-1(n≥2)求数列{bn}的通项公式;
(2)把数列{bn}的通项公式代入数列{cn}的通项cn=bn•(
1
3
)n
,然后运用错位相减法求数列{cn}的前n项和;
(3)运用裂项相消法求出数列{
1
bnbn+1
}前n项和为Tn,代入Tn
1000
2009
进行求解.
解答:解:(1)因为点(1,
1
3
)是函数f(x)=ax(a>0,且a≠1)的图象上一点,
所以f(1)=a=
1
3
,所以,f(x)=(
1
3
)x

因为等比数列{an}的前n项和为f(n)-c,
所以a1=f(1)-c=
1
3
-c

a2=[f(2)-c]-[f(1)-c]=(
1
3
)2-c-
1
3
+c=-
2
9

a3=[f(3)-c]-[f(2)-c]=(
1
3
)3-c-(
1
3
)2+c=-
2
27

又数列{an}成等比数列,所以,a1=
a22
a3
=
4
81
-
2
27
=-
2
3
=
1
3
-c
,所以c=1.
所以
1
3
-1=-
2
3

又公比q=
a3
a2
=
-
2
27
-
2
9
=
1
3

所以an=-
2
3
(
1
3
)n-1=-2(
1
3
)n

由数列{bn}的前n项和满足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).
(
Sn
-
Sn-1
)(
Sn
+
Sn-1
)=
Sn
+
Sn-1
  (n≥2),
又bn>0,
Sn
>0
,所以
Sn
-
Sn-1
=1

所以,数列{
Sn
}构成一个首项为1公差为1的等差数列,
Sn
=1+(n-1)×1=n
,所以Sn=n2
当n≥2时,bn=Sn-Sn-1=n2-(n-1)2=2n-1
满足b1=c=1.
所以,bn=2n-1(n∈N*)
(2)由cn=bn(
1
3
)n=(2n-1)(
1
3
)n

所以Rn=c1+c2+c3+…+cn=1×(
1
3
)1+3×(
1
3
)2+5×(
1
3
)3+…+(2n-1)×(
1
3
)n

两边同时乘以
1
3
得:
1
3
Rn=1×(
1
3
)2+3×(
1
3
)3+5×(
1
3
)4
+…+(2n-3)×(
1
3
)n+(2n-1)×(
1
3
)n+1

①式减②式得:
2
3
Rn=
1
3
+2[(
1
3
)2+(
1
3
)3+(
1
3
)4+…+(
1
3
)n]
-(2n-1)×(
1
3
)n+1


化简得:
2
3
Rn=
1
3
+2×
(
1
3
)2[1-(
1
3
)n-1]
1-
1
3
-(2n-1)×(
1
3
)n+1
=
2
3
-
2(n+1)
3
×(
1
3
)n


所以Rn=1-
n+1
3n

(3)Tn=
1
b1b2
+
1
b2b3
+
1
b3b4
+…+
1
bnbn+1

=
1
1×3
+
1
3×5
+
1
5×7
+…+
1
(2n-1)(2n+1)

=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)+
1
2
(
1
5
-
1
7
)+…+
1
2
(
1
2n-1
-
1
2n+1
)

=
1
2
(1-
1
2n+1
)=
n
2n+1

Tn=
n
2n+1
1000
2009
,得n>
1000
9
,所以,满足Tn
1000
2009
的最小正整数为112.
点评:本题考查了等差和等比数列的通项公式,考查了错位相减法和裂项相消法求数列的前n项的和,比较综合考查了学生分析问题和解决问题的能力,考查了学生的计算能力,特别是(1)中求解两个数列的通项公式,需要有一定的灵活变化技巧,此题属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•惠州模拟)设正项等比数列{an}的前n项和为Sn,已知a3=4,a4a5a6=212
(Ⅰ)求首项a1和公比q的值;
(Ⅱ)若Sn=210-1,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.
(1)求应从小学、中学、大学中分别抽取的学校数目.
(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,求抽取的2所学校均为小学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)不等式组
x≤2
y≥0
y≤x-1
表示的平面区域的面积是
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为(  )

查看答案和解析>>

同步练习册答案