精英家教网 > 高中数学 > 题目详情

已知函数的图象过坐标原点O,且在点 处的切线的斜率是5.

(1)求实数的值;

(2)求在区间上的最大值;

 

【答案】

解:(1)当时,

  ………  2分

依题意  ∴    ∴   ………  3分

 又

   ………  4分

(2)当时,

,令,∴。………   5分

x变化时,的变化情况如下表:

-1

(-1,0)

0

(0,

,1)

1

 

0

+

0

 

2

 

 

 

 ;

∴当时,最大值为2。………   8分

时,

,则是减函数,此时;若时,,此时;……   10分

时,是增函数,。………   11分

∵当时,有   

时,有     ………   12分

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年江西省宜春中学、新余一中高三(上)12月联考数学试卷(文科)(解析版) 题型:解答题

已知函数的图象过坐标原点O,且在点(-1,f(-1))处的切线的斜率是-5.
(1)试确定实数b,c的值,并求f(x)在区间[-1,2]上的最大值;
(2)对任意给定的正实数a,曲线y=f(x)上是否存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省高三5月高考冲刺理科数学试卷(解析版) 题型:解答题

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省菏泽市高三5月高考冲刺题理科数学试卷(解析版) 题型:解答题

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省高三12月月考文科数学 题型:解答题

(本小题满分14分)

已知函数的图象过坐标原点O, 且在点处的切线的斜率是.(1)求实数的值;  (2)求在区间上的最大值

 

查看答案和解析>>

同步练习册答案