精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
与椭圆
x2
9
+
y2
5
=1
有公共焦点,右焦点为F,且两支曲线在第一象限的交点为P,若|PF|=2,则双曲线的离心率为(  )
A.5B.
3
C.
1
2
D.2
∵椭圆
x2
9
+
y2
5
=1
中,c=
9-5
=2,∴椭圆的右焦点为F(2,0).
设椭圆与双曲线的交点为P(m,n),(m>0,n>0)
可得
m2
9
+
n2
5
=1
(m-2)2+n2
=2
,解之得m=
3
2
,n=
15
2
,得P坐标为(
3
2
15
2
),
又∵双曲线
x2
a2
-
y2
b2
=1
与椭圆有公共焦点,且经过点P(
3
2
15
2
),
(
3
2
)
2
a2
-
(
15
2
)
2
b2
=1
a2+b2=4
,解之得a=1,b=
3

因此,双曲线的离心率e=
c
a
=2.
故选:D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

双曲线y2-3x2=9的渐近线方程是(  )
A.y=±3xB.y=±
1
3
x
C.y=±
3
x
D.y=±
3
3
x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设双曲线C:
x2
a2
-y2=1(a>0)
与直线l:x+y=1交于两个不同的点A,B,求双曲线C的离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的焦点在y轴上,实轴长为8,虚轴长为6,则该双曲线的渐近线方程为(  )
A.y=±
4
3
x
B.y=±
3
4
x
C.y=±
5
4
x
D.y=±
5
3
x

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1,F2分别是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,若双曲线右支上存在一点P,使(
OP
+
OF2
)•
F2P
=0
,O为坐标原点,且|
PF1
|=
3
|
PF2
|
,则该双曲线的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线具有光学性质“从双曲线的一个焦点发出的光线被双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一焦点”,由此可得如下结论,过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)右之上的点P处的切线平分∠F1PF2,现过原点O作的平行线交F1P于点M,则|MP|的长度为(  )
A.aB.b
C.
a2+b2
D.与P点位置有关

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

经过双曲线:
x2
4
-y2=1
的右焦点的直线与双曲线交于两点A,B,若AB=4,则这样的直线有几条(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已如点M(1,0)及双曲线
x2
3
-y2=1
的右支上两动点A,B,当∠AMB最大时,它的余弦值为(  )
A.-
1
2
B.
1
2
C.-
1
3
D.
1
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知A、B是双曲线C:
x2
4
-
y2
3
=1
的左、右顶点,P是坐标平面上异于A、B的一点,设直线PA、PB的斜率分别为k1,k2
求证:k1k2=
3
4
是P点在双曲线C上的充分必要条件.

查看答案和解析>>

同步练习册答案