精英家教网 > 高中数学 > 题目详情
14.已知数列{an}的前n项和Sn=3n2-n,bn=$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn

分析 (1)由数列的前n项和求得首项,再由an=Sn-Sn-1(n≥2)求出数列通项公式;
(2)把数列{an}的通项公式代入bn=$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$,然后利用裂项相消法求得数列{bn}的前n项和Tn

解答 解:(1)由Sn=3n2-n,得a1=S1=2;
当n≥2时,${a}_{n}={S}_{n}-{S}_{n-1}=(3{n}^{2}-n)-[3(n-1)^{2}-(n-1)]$
=6n-4.
a1=2适合上式,
∴an=6n-4;
(2)由bn=$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$=$\frac{\sqrt{{a}_{n+1}}-\sqrt{{a}_{n}}}{{a}_{n+1}-{a}_{n}}=\frac{1}{6}(\sqrt{{a}_{n+1}}-\sqrt{{a}_{n}})$,
∴Tn=b1+b2+…+bn=$\frac{1}{6}(\sqrt{{a}_{2}}-\sqrt{{a}_{1}}+\sqrt{{a}_{3}}-\sqrt{{a}_{2}}+…+\sqrt{{a}_{n+1}}-\sqrt{{a}_{n}})$
=$\frac{1}{6}(\sqrt{{a}_{n+1}}-\sqrt{{a}_{1}})=\frac{1}{6}(\sqrt{6n+2}-\sqrt{2})$.

点评 本题考查数列递推式,训练了利用裂项相消法求数列的通项公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=loga(1+x),g(x)=loga(1-x)其中(a>0且a≠1),设h(x)=f(x)-g(x).
(1)求函数h(x)的定义域,判断h(x)的奇偶性,并说明理由;
(2)求使h(x)>0的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知i是虚数单位,m,n∈R,则“m=n=1”是“m2-1-2ni=-2i”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=$\frac{ln(x+1)}{{\sqrt{{3^x}-27}}}$的定义域为(  )
A.(-1,+∞)B.(-1,3)C.(3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.为检测某种零件的生产质量,检验人员需抽取同批次的零件样本进行检测指标评分.若检测后评分结果大于60分的零件为合格零件,评分结果不超过40分的零件将直接被淘汰,评分结果在(40,60]内的零件可能被修复也可能被淘汰.现检验员小张检测出200个合格零件,根据指标评分绘制的频率分布直方图如图所示.
(1)求出频率分布与直方图中a的值;
(2)估计这200个零件评分结果的平均数和中位数;
(2)根据已有的经验,可能被修复的零件个体被修复的概率如表:
零件评分结果所在区间(40,50](50,60]
每个零件个数被修复的概率$\frac{1}{3}$$\frac{1}{2}$
假设每个零件被修复与否相互独立.现有5个零件的检测指标评分结果为(单位:分):38,43,45,52,58,
①求这5个零件中,至多有2个不被修复而淘汰的概率;
②记这5个零件被修复的个数为随机变量X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设{an}为等差数列,Sn表示前n项之和,其中a1+a2=0,且S3=3,求该数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.化简下列各式:
(1)$\frac{{a}^{2}\root{3}{{a}^{2}b}}{\sqrt{ab}}$;
(2)$\frac{(b\sqrt{ab})^{3}\root{3}{{a}^{2}b}}{\root{3}{a{b}^{2}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.空间四边形ABCD中,M、G分别是BC、CD的中点,则$\overrightarrow{MG}$-$\overrightarrow{AB}$+$\overrightarrow{AD}$等于(  )
A.$\frac{3}{2}$$\overrightarrow{DB}$B.3$\overrightarrow{MG}$C.3$\overrightarrow{GM}$D.2$\overrightarrow{MG}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若圆锥的底面与顶点都在球O的球面上,且圆锥的底面半径为1,体积为π,则球O的表面积为(  )
A.$\frac{16π}{9}$B.$\frac{100π}{9}$C.25πD.36π

查看答案和解析>>

同步练习册答案