精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,直线l过点A05)且与曲线x2+y25x0)相切于点B,则直线l的方程是_____,设E是线段OB中点,长度为的线段PQPQ的上方)在直线l上滑动,则|OP|+|EQ|的最小值是_____.

【答案】2xy+502x+y50

【解析】

由直线与圆相切求出切线的斜率即可得知切线的方程;作出图象,结合勾股定理表示出|OP|+|EQ|,所以当时,|OP|+|EQ|取得最小值.

①显然直线l的斜率一定存在,所以设直线l的方程为:ykx+5,即kxy+50

∵直线l与曲线x2+y25x0)相切,∴,解得:k±2

∴直线l的方程为:2xy+502x+y50.

②由①可知,直线l的两条方程关于y轴对称,所以不妨取直线l的方程为2xy+50

如图所示,由勾股定理得,

,所以|OP|+|EQ|

时,|OP|+|EQ|取得最小值,为.

故答案为:2xy+502x+y50.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在正方体中,点是四边形的中心,关于直线,下列说法正确的是( )

A. B.

C. 平面D. 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为,在同一平面直角坐标系中,将曲线上的点按坐标变换得到曲线,以原点为极点, 轴的正半轴为极轴,建立极坐标系.

)求曲线的极坐标方程;

)若过点(极坐标)且倾斜角为的直线与曲线交于两点,弦的中点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次数学考试中,考生的成绩号服从一个正态分布,即.

1)试求考试成绩位于区间上的概率是多少?

2)若这次考试共有2000名考生,试估计考试成绩在的考生大约有多少人?

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是奇函数,其中a>1.

(1)求实数m的值;

(2)讨论函数f(x)的增减性;

(3)当时,f(x)的值域是(1,+∞),求n与a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的某种容器的体积为,它是由圆锥和圆柱两部分连结而成的,圆柱与圆锥的底面圆半径都为.圆锥的高为,母线与底面所成的角为;圆柱的高为.已知圆柱底面造价为,圆柱侧面造价为,圆锥侧面造价为.

(1)将圆柱的高表示为底面圆半径的函数,并求出定义域;

(2)当容器造价最低时,圆柱的底面圆半径为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设F1F2是椭圆Cab0)的左、右焦点,直线ykxk0)与椭圆C交于AB.已知椭圆C的焦距是2,四边形AF1BF2的周长是4.

1)求椭圆C的方程;

2)直线AF1BF1分别与椭圆C交于MN,求MNF1面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱中,底面为等腰梯形, 分别是棱的中点.

(1)证明:直线平面

(2)求证:面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)一个盒子里装有三张卡片,分别标记有数字,这三张卡片除标记的数字外完全相同。随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为.

)求抽取的卡片上的数字满足的概率;

)求抽取的卡片上的数字不完全相同的概率.

查看答案和解析>>

同步练习册答案