【题目】如图,在四棱锥中,底面是平行四边形,平面,,,是棱上的一点.
(1)证明:平面;
(2)若平面,求的值;
(3)在(2)的条件下,三棱锥的体积是18,求点到平面的距离.
【答案】(1)见解析 ;(2) ;(3).
【解析】
(1)推导出BC⊥PD,BD⊥BC,由此能证明BC⊥平面PBD.(2)连结AC,交BD于O,连结OE,由PA∥平面BDE,得OE∥PA,由此能求出 .(3)B到平面PCD的距离d=
3,设PD=a,则 = ,由三棱锥P﹣BDE的体积是18,求出PD=a=6,设点D到平面PAB的距离为h,由VP﹣ABD=VD﹣PAB,能求出D点到平面PAB的距离.
(1)∵在四棱锥P﹣ABCD中,底面ABCD是平行四边形,PD⊥平面ABCD,
∴BC⊥PD,∵AD=BD=6,AB=6,BC=AD,∴BD2+BC2=CD2,∴BD⊥BC,
∵PD∩BD=D,∴BC⊥平面PBD.
(2)连结AC交BD于O,连结OE,则O是AC的中点,
∵PA∥平面BDE,∴OE∥PA,∴E是PC的中点,∴=.
(3)B到平面PCD的距离d==3,设PD=a,则==,∵三棱锥P﹣BDE的体积是18,∴VP﹣BDE=VB﹣PDE===18,解得PD=a=6,设点D到平面PAB的距离为h,
∵PD⊥平面ABCD,AD=BD=6,AB=6,
∴PA=PB==6,
∴=18,
==18,
∵VP﹣ABD=VD﹣PAB,∴,
∴h===2.∴D点到平面PAB的距离为2.
科目:高中数学 来源: 题型:
【题目】已知动点到定点的距离比到定直线的距离小1.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)过点任意作互相垂直的两条直线,分别交曲线于点和.设线段, 的中点分别为,求证:直线恒过一个定点;
(Ⅲ)在(Ⅱ)的条件下,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】目前某地区有100万人,经过x年后为y万人,如果年平均增长率是1.2%,请回答下列问题:
(1)试推算出y关于x的函数关系式;
(2)计算10年后该地区的人口总数(精确到0.1万人);
(3)计算大约多少年后该地区的人口总数会达到120万(精确到1年).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0,b>0,函数f(x)=|x+a|+|2x-b|的最小值为1.
(1)证明:2a+b=2;
(2)若a+2b≥tab恒成立,求实数t的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】判断下列函数的奇偶性:
(1)f(x)=x+1;
(2)f(x)=x3+3x,x∈[-4,4);
(3)f(x)=|x-2|-|x+2|;
(4)f(x)=
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知袋中装有大小相同的2个白球、2个红球和1个黄球.一项游戏规定:每个白球、红球和黄球的分值分别是0分、1分和2分,每一局从袋中一次性取出三个球,将3个球对应的分值相加后称为该局的得分,计算完得分后将球放回袋中.当出现第局得分()的情况就算游戏过关,同时游戏结束,若四局过后仍未过关,游戏也结束.
(1)求在一局游戏中得3分的概率;
(2)求游戏结束时局数的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面是追踪调查200个某种电子元件寿命(单位:)频率分布直方图,如图:
其中300-400、400-500两组数据丢失,下面四个说法中有且只有一个与原数据相符,这个说法是( )
①寿命在300-400的频数是90;
②寿命在400-500的矩形的面积是0.2;
③用频率分布直方图估计电子元件的平均寿命为:
④寿命超过的频率为0.3
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C:x2-y2=1及直线l:y=kx-1.
(1)若l与C有两个不同的交点,求实数k的取值范围;
(2)若l与C交于A,B两点,O为坐标原点,且△AOB的面积为,求实数k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com