精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是平行四边形,平面是棱上的一点.

(1)证明:平面

(2)若平面,求的值;

(3)在(2)的条件下,三棱锥的体积是18,求点到平面的距离.

【答案】(1)见解析 ;(2) ;(3).

【解析】

1)推导出BCPDBDBC,由此能证明BC⊥平面PBD.(2)连结AC,交BDO,连结OE,由PA∥平面BDE,得OEPA,由此能求出 .(3B到平面PCD的距离d

3,设PDa,则 ,由三棱锥PBDE的体积是18,求出PDa6,设点D到平面PAB的距离为h,由VPABDVDPAB,能求出D点到平面PAB的距离.

1)∵在四棱锥PABCD中,底面ABCD是平行四边形,PD⊥平面ABCD

BCPD,∵ADBD6AB6BCAD,∴BD2+BC2CD2,∴BDBC

PD∩BDD,∴BC⊥平面PBD

2)连结ACBDO,连结OE,则OAC的中点,

PA∥平面BDE,∴OEPA,∴EPC的中点,∴

3B到平面PCD的距离d3PDa,则∵三棱锥PBDE的体积是18,∴VPBDEVBPDE18,解得PDa6设点D到平面PAB的距离为h

PD⊥平面ABCDADBD6AB6

PAPB6

18

18

VPABDVDPAB,∴

h2.∴D点到平面PAB的距离为2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知动点到定点的距离比到定直线的距离小1.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)过点任意作互相垂直的两条直线,分别交曲线于点.设线段 的中点分别为,求证:直线恒过一个定点;

(Ⅲ)在(Ⅱ)的条件下,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】目前某地区有100万人,经过x年后为y万人,如果年平均增长率是1.2%,请回答下列问题:

1)试推算出y关于x的函数关系式;

2)计算10年后该地区的人口总数(精确到0.1万人);

3)计算大约多少年后该地区的人口总数会达到120万(精确到1年).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,b>0,函数f(x)=|x+a|+|2x-b|的最小值为1.

(1)证明:2a+b=2;

(2)若a+2b≥tab恒成立,求实数t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列函数的奇偶性:

1f(x)x1

2f(x)x33xx[44)

3f(x)|x2||x2|

4f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知袋中装有大小相同的2个白球、2个红球和1个黄球.一项游戏规定:每个白球、红球和黄球的分值分别是0分、1分和2分,每一局从袋中一次性取出三个球,将3个球对应的分值相加后称为该局的得分,计算完得分后将球放回袋中.当出现第局得分()的情况就算游戏过关,同时游戏结束,若四局过后仍未过关,游戏也结束.

(1)求在一局游戏中得3分的概率;

(2)求游戏结束时局数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面是追踪调查200个某种电子元件寿命(单位:)频率分布直方图,如图:

其中300-400、400-500两组数据丢失,下面四个说法中有且只有一个与原数据相符,这个说法是( )

①寿命在300-400的频数是90;

②寿命在400-500的矩形的面积是0.2;

③用频率分布直方图估计电子元件的平均寿命为:

④寿命超过的频率为0.3

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线Cx2y2=1及直线lykx-1.

(1)lC有两个不同的交点求实数k的取值范围

(2)lC交于AB两点O为坐标原点AOB的面积为求实数k的值

查看答案和解析>>

同步练习册答案