精英家教网 > 高中数学 > 题目详情
10.在△ABC中,a,b,c分别是角A,B,C的对边,且$\sqrt{3}$asinC=c(1+cosA).
(1)求角A;
(2)若a2=16-3bc,且S△ABC=$\sqrt{3}$,求b,c的值.

分析 (1)由正弦定理,两角差的正弦函数公式化简已知可得sin(A-$\frac{π}{6}$)=$\frac{1}{2}$,由0<A<π,得-$\frac{π}{6}$<A-$\frac{π}{6}$<$\frac{5π}{6}$,利用特殊角的三角函数值可求A的值.                                          
(2)由已知及余弦定理可求b+c=4,又利用三角形面积公式可求bc=4,联立即可解得b,c的值.

解答 (本题满分为12分)
解:(1)∵$\sqrt{3}$asinC=c(1+cosA),
∴由正弦定理得$\sqrt{3}$sinAsinC=sinC(1+cosA).            …(2分)
∴$\sqrt{3}$sinA-cosA=1,故$\frac{\sqrt{3}}{2}$sinA-$\frac{1}{2}$cosA=$\frac{1}{2}$,所以sin(A-$\frac{π}{6}$)=$\frac{1}{2}$.…(4分)
由0<A<π,得-$\frac{π}{6}$<A-$\frac{π}{6}$<$\frac{5π}{6}$,故A-$\frac{π}{6}$=$\frac{π}{6}$.
∴A=$\frac{π}{3}$;                                              …(6分)
(2)在△ABC中,a2=b2+c2-2bccosA,故16-3bc=b2+c2-bc.
∴(b+c)2=16,故b+c=4. ①…(9分)
又S△ABC=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{4}$bc=$\sqrt{3}$,
∴bc=4.②…(11分)
联立①②式解得b=c=2.…(12分)

点评 本题主要考查了正弦定理,两角差的正弦函数公式,特殊角的三角函数值,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知动点P与两个顶点M(1,0),N(4,0)的距离的比为$\frac{1}{2}$.
(I)求动点P的轨迹方程;
(II)若点A(-2,-2),B(-2,6),C(-4,2),是否存在点P,使得|PA|2+|PB|2+|PC|2=36.若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若α∈(0,$\frac{π}{2}$),且sin2α+cos2α=$\frac{1}{4}$,则tanα=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=x2-5x+6,x∈[-5,5],在定义域内任取一点x0,使f(x0)≤0的概率是(  )
A.$\frac{1}{10}$B.$\frac{3}{5}$C.$\frac{3}{10}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知等比数列{an}前n项和为Sn,且S4=16,S8=17,则公比q=$±\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,c=2a,B=120°,且△ABC面积为$\frac{\sqrt{3}}{2}$.
(1)求b的值;
(2)求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知两函数y=x2-1与y=1-x3在x=x0处有相同的导数,则x0的值为(  )
A.0B.-$\frac{2}{3}$C.0或-$\frac{2}{3}$D.0或1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.从抛物线y2=32x上各点向x轴作垂线,其垂线段中点的轨迹为E.
(Ⅰ)求轨迹E的方程;
(Ⅱ)已知直线l:y=k(x-2)(k>0)与轨迹E交于A,B两点,且点F(2,0),若|AF|=2|BF|,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示的茎叶图记录了甲、乙两组各5名同学的投篮命中次数,乙组记录中有一个数据模糊,无法确认,在图中用x表示.
(1)若乙组同学投篮命中次数的平均数比甲组同学的平均数少1,求x及乙组同学投篮命中次数的方差;
(2)在(1)的条件下,分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名,求这两名同学的投篮命中次数之和为16的概率.

查看答案和解析>>

同步练习册答案