精英家教网 > 高中数学 > 题目详情
已知椭圆的离心率为,椭圆的的一个顶点和两个焦点构成的三角形的面积为4,
(1)求椭圆C的方程;
(2)已知直线与椭圆C交于A, B两点,若点M(, 0),求证为定值.
(1);(2)参考解析

试题分析:(1)要求椭圆的方程需要找到关于的两个等式即可.由离心率可以得到一个,又由椭圆的的一个顶点和两个焦点构成的三角形的面积为4,可以得到一个等式,即可求出椭圆的方程.
(2)由线与椭圆C交于A, B两点,若点M(, 0),所以要表示出的结果,通过直线方程与椭圆方程联立即可得一个二次方程.写出韦达定理,再根据向量与向量的数量积所得到的关系式即可得到一个定值.
试题解析:(1)因为满足,,
.解得,则椭圆方程为.         4分
(2)把直线代入椭圆的方程得
解得

=
=
==
所以为定值.         12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C的中心在原点,焦点在x轴上,离心率为,且过点,点A、B分别是椭圆C长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,.

(1)求椭圆C的方程;
(2)求点P的坐标;
(3)设M是直角三角PAF的外接圆圆心,求椭圆C上的点到点M的距离的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点分别是椭圆的左、右焦点, 点在椭圆上上.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设直线均与椭圆相切,试探究在轴上是否存在定点,点的距离之积恒为1?若存在,请求出点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的一个焦点是(1,0),两个焦点与短轴的一个端点构成等边三角形.
(1)求椭圆C的方程;
(2)过点Q(4,0)且不与坐标轴垂直的直线l交椭圆C于A、B两点,设点A关于x轴的
对称点为A1.求证:直线A1B过x轴上一定点,并求出此定点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OAl的距离等于4?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若θ是任意实数,则方程x2+4y2=1所表示的曲线一定不是 (   )
A.圆B.双曲线C.直线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线与曲线的交点个数是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过点且和抛物线相切的直线方程为                  .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知过抛物线焦点的直线与抛物线相交于两点,若,则    .

查看答案和解析>>

同步练习册答案