精英家教网 > 高中数学 > 题目详情
已知实数x、y满足
2x-y≤0
x-3y+5≥0
x>0
y>0
,则z=(
1
2
2x•(
1
2
)y
的最小值为
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用指数幂的运算法则,利用数形结合确定z的最小值.
解答: 解:作出不等式组对应的平面区域如图:(阴影部分ABC).
由z=(
1
2
2x•(
1
2
)y
=(
1
2
2x+y
设m=2x+y得y=-2x+m,
平移直线y=-2x+m,
由图象可知当直线y=-2x+m经过点A时,直线y=-2x+m的截距最大,
此时m最大.z最小,
2x-y=0
x-3y+5=0
,解得
x=1
y=2
,即A(1,2)
A的坐标代入目标函数m=2x+y,
得m=2+2=4.
即z=(
1
2
2x•(
1
2
)y
=(
1
2
2x+y的最大值为(
1
2
4=
1
16

故答案为:
1
16
点评:本题主要考查线性规划的应用,结合指数幂的运算法则以及目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

程序框图的判断框有
 
个出口.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α∈(0,
π
2
),若sin(α-
π
3
)=
1
3
,sinα的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将5名实习老师分配到4个班级任课,每班至少1人,则不同的分配方法数是
 
(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个样本为8,12,14,18,则样本的中位数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,不等式
x+y≥0
x-y≥0
x≤a
(a为常数)表示平面区域的面积为9,则
y-2
x+4
的最小值为(  )
A、-1
B、
2
7
C、
1
7
D、-
5
7

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,对任意x∈R有f(x)=f(x+6),且f(x)在(0,3)内单调递减,f(x)的图象关于直线x=3对称,则下列正确的结论是(  )
A、f(1.5)<f(3.5)<f(6.5)
B、f(6.5)<f(3.5)<f(1.5)
C、f(3.5)<f(1.5)<f(6.5)
D、f(3.5)<f(6.5)<f(1.5)

查看答案和解析>>

科目:高中数学 来源: 题型:

若x<m-1或x>m+1是x2-2x-3>0的必要不充分条件,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

i是虚数单位,复数
2i
3
+3i
=(  )
A、
1
2
-
3
6
i
B、
1
2
+
3
6
i
C、1-
3
3
i
D、1+
3
3
i

查看答案和解析>>

同步练习册答案