精英家教网 > 高中数学 > 题目详情
2.定义在R上的函数f(x)满足f(x+6)=f(x).当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x.则f(1)+f(2)+…+f(2015)=(  )
A.333B.336C.1678D.2015

分析 由已知得到函数的周期为6,找到与2015函数值相等的(-3,3)的自变量,按照周期求值.

解答 解:由已知函数周期为6,并且2015=6×335+5,
并且f(1)=1,
f(2)=2,
f(3)=f(-3+6)=f(-3)=-(-3+2)2=-1,
f(4)=f(-2+6)=f(-2)=0,
f(5)=f(-1+6)=f(-1)=-1,
f(6)=f(0)=0,
所以f(1)+f(2)+…+f(6)=1,
所以f(1)+f(2)+…+f(2015)=1×335+f(1)+f(2)+f(3)+f(4)+f(5)=335+1=336;
故选B.

点评 本题考查了函数的周期性的运用;关键是由已知明确所求是几个周期的函数值另外加上前几个自变量的函数值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在△ABC中,已知a=$\sqrt{2}$,b=1,∠B=45°,解此三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ln(ex+1)+ax,(x∈R)是偶函数,且在区间[0,+∞)上是增函数.
(1)试确定实数a的值;
(2)先判断函数f(x)在区间(-∞,0]上的单调性,并用定义证明你的结论;
(3)关于x的不等式f(x)≥b-ln$\frac{1}{2}$在R上恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列向量与$\overrightarrow{a}$=(1,2)共线的是(  )
A.(2,1)B.(1,2)C.(-1,-2)D.(2,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2x+$\frac{m}{{2}^{x}}$(m∈R)是奇函数.
(1)求实数m的值;
(2)用函数单调性的定义证明函数f(x)在(-∞,+∞)上是增函数;
(3)对任意的x∈R,若不等式f(x2-4x-k)+$\frac{3}{2}$>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x、y满足$\left\{\begin{array}{l}{x≤2}\\{y≤2}\\{x+y≥2}\end{array}\right.$,则z=x+2y的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.数列{an}中,a1=1,a2=3,an+2是anan+1的个位数字,Sn是{an}的前n项和,则S2015=(  )
A.8733B.8710C.8726D.8717

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=Asin($\frac{π}{3}x$+φ),(A>0,0<φ<$\frac{π}{2}$),y=f(x)的部分图象如图所示,P,Q分别为该图象上相邻的最高点和最低点,点P在x轴上的射影为R(1,0),cos∠PRQ=-$\frac{4}{5}$.
(1)求A,φ的值;
(2)将函数f(x)的图象上所有点向右平移θ(θ>0)个单位,得到函数g(x)的图象,若g(x)在区间[0,3]上单调递增,求θ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图所示的程序框图中,若输入x的值为10,则输出的x与k的值的和为(  )
A.179B.173C.90D.84

查看答案和解析>>

同步练习册答案