【题目】【2018届四川省绵阳南山中学高三二诊】已知椭圆的焦距为,且经过点.过点的斜率为的直线与椭圆交于两点,与轴交于点,点关于轴的对称点,直线交轴于点.
(1)求的取值范围;
(2)试问: 是否为定值?若是,求出定值;否则,说明理由.
科目:高中数学 来源: 题型:
【题目】在中, , , , 是中点(如图1).将沿折起到图2中的位置,得到四棱锥.
(1)将沿折起的过程中, 平面是否成立?并证明你的结论;
(2)若与平面所成的角为60°,且为锐角三角形,求平面和平面所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年“双节”期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速分成六段: , , , , , 后得到如图的频率分布直方图.
(I)某调查公司在采样中,用到的是什么抽样方法?
(II)求这40辆小型车辆车速的众数、中位数及平均数的估计值;
(III)若从车速在的车辆中任抽取2辆,求车速在的车辆至少有一辆的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高中年级开设了丰富多彩的校本课程,甲、乙两班各随机抽取了5名学生的学分,用茎叶图表示.,分别表示甲、乙两班各自5名学生学分的标准差,则_______.(填“”“<”或“=”)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,直平行六面体中,为棱上任意一点,为底面(除外)上一点,已知在底面上的射影为,若再增加一个条件,就能得到,现给出以下条件:
①;②在上;③平面;④直线和在平面的射影为同一条直线.其中一定能成为增加条件的是__________.(把你认为正确的都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】质监部门从某超市销售的甲、乙两种食用油中分别各随机抽取100桶检测某项质量指标,由检测结果得到如下的频率分布直方图:
(Ⅰ)写出频率分布直方图(甲)中的值;记甲、乙两种食用油100桶样本的质量指标的方差分别为,,试比较,的大小(只要求写出答案);
(Ⅱ)估计在甲、乙两种食用油中随机抽取1捅,恰有一桶的质量指标大于20;
(Ⅲ)由频率分布直方图可以认为,乙种食用油的质量指标值服从正态分布.其中近似为样本平均数,近似为样本方差,设表示从乙种食用油中随机抽取10桶,其质量指标值位于(14.55,38.45)的桶数,求的数学期望.
注:①同一组数据用该区问的中点值作代表,计算得
②若,则,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为研究某种图书每册的成本费(元)与印刷数(千册)的关系,收集了一些数据并作了初步处理,得到了下面的散点图及一些统计量的值.
15.25 | 3.63 | 0.269 | 2085.5 | 0.787 | 7.049 |
表中, .
(1)根据散点图判断: 与哪一个更适宜作为每册成本费(元)与印刷数(千册)的回归方程类型?(只要求给出判断,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立关于的回归方程(回归系数的结果精确到0.01);
(3)若每册书定价为10元,则至少应该印刷多少册才能使销售利润不低于78840元?(假设能够全部售出,结果精确到1)
(附:对于一组数据, ,…, ,其回归直线的斜率和截距的最小二乘估计分别为, )
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com