精英家教网 > 高中数学 > 题目详情

已知数列{an}的前n项和为sn,满足Sn=2an-2n(n∈N+),
(1)求数列{an}的通项公式an
(2)若数列bn满足bn=log2(an+2),Tn为数列{数学公式}的前n项和,求Tn
(3)(只理科作)接(2)中的Tn,求证:Tn数学公式

解:(1)当n∈N+时,Sn=2an-2n,
则当n≥2,n∈N+时,Sn-1=2an-1-2(n-1)
①-②,an=2an-2an-1-2,an=2an-1+2
∴an+2=2(an-1+2),
,n=1时 S1=2a1-2,∴a1=2
∴{an+2}是a1+2=4为首项2为公比的等比数列,
∴an+2=4•2n-1=2n+1
∴an=2n+1-2
(2)证明bn=log2(an+2)=log22n+1=n+1.



③-④,=
=
=

(3)n≥2时
∴{Tn}为递增数列


分析:(1)由Sn与an的关系Sn=2an-2n利用仿写的方法消去Sn得到an+2=2(an-1+2),再利用等比数列的定义求出an=2n+1-2.
(2)由(1)得数列{an}的通项公式an=2n+1-2所以bn=n+1∴利用错位相减可得∴
(3)利用证明Tn是递增数列,求其最小值即可.
点评:本题考查Sn与an以及错位相减法的运用,求通项与求和是高考的热点,数列与不等式相结合的综合题也是常考内容,此类问题多与数列的单调性相关.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案