精英家教网 > 高中数学 > 题目详情
12.直线x+y+2=0与圆(x+1)2+(y-1)2=16的位置关系为相交.

分析 求出圆心到直线的距离,将此距离和圆的半径作对比,得出结论.

解答 解:由题意可得,圆(x+1)2+(y-1)2=16的圆心(-1,1),半径r=4
圆心到直线x+y+2=0的距离为d=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$<4,故直线和圆相交,
故答案为:相交.

点评 本题考查直线和圆的位置关系的判断,点到直线的距离公式的应用,属于基础试题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.设集合M={m|-3<m<2},N={n|-1≤n≤3,n∈Z},则M∩N={-1,0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设Sn是公比q(q>0),首项为1的等比数列前n项和,求$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{S}_{n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=xlnx,g(x)=$\frac{a-2x}{x}$,a≠0,其中f′(x)是f(x)的导函数.
(1)求函数h(x)=f′(x)+g(x)的单调区间;
(2)求证:对任意n∈N*,均有$\frac{{e}^{n}}{n!}≤{e}^{1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}}<en$.(e为自然对数的底数,n!=1×2×3×…×n)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{m}$=(cos2x,$\frac{\sqrt{3}}{2}$sinx-$\frac{1}{2}cosx$),$\overrightarrow{n}$=(1,$\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx$),设函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$.
(Ⅰ)求函数f(x)取得最大值时x取值的集合;
(Ⅱ)设A,B,C为锐角三角形ABC的三个内角,若cosB=$\frac{3}{5}$,f(C)=-$\frac{1}{4}$,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.判断下列函数在定义域内的单调性:①y=1.1x ②y=($\frac{1}{4}$)x ③y=4-x ④y=1nx    ⑤y=x${\;}^\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.判断函数的奇偶性:
①f(x)=x4+x2
②f(x)=3x+1,
③f(x)=x+$\frac{1}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.垂直于x轴,且过点(1,3)的直线的方程为(  )
A.x=1B.y=3C.y=3xD.x=3y

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若椭圆M:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,直线y=±$\frac{\sqrt{3}}{3}$x与椭圆有四个交点,且以这四个交点为顶点的四边形的面积为16$\sqrt{3}$,则b=2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案