精英家教网 > 高中数学 > 题目详情

【题目】函数的图象与x轴交于点AB(A在点B的左侧),函数的图象与x轴交于点CD(C在点D的左侧),其中.

(1)求证:函数的图象交点落在一条定直线上;

(2),求abk应满足的关系式:

(3)是否存在函数,使得BC为线段AD的三等分点?若存在,求的值,若不存在,说明理由.

【答案】(1)见解析;(2);(3)存在,

【解析】

1)令,解方程即可求得.

2)若,可得ABCD为抛物线与x轴的交点,求出的值,代入上式即可求解.

3)分类讨论,由BC为线段AD的三等分点,当点B在点C左侧时,,则有,将代入即可;当点C在点B左侧时,,则有,将代入即可求解.

(1)时,

∴函数的图象交点落在一条定直线上;

(2),则ABCD为抛物线与x轴的交点,可得

代入

所以;

(3)因为BC为线段AD的三等分点,

当点B在点C左侧时,,则有

整理得:

解得;

当点C在点B左侧时,,则有

整理得:

,方程无解,

综上,的值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

1)求的解析式;

(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形.现随机地向大正方形内部区域投掷飞镖,若飞镖落在小正方形区域的概率是,则直角三角形的两条直角边长的比是(长边:短边)(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱柱中,底面为平行四边形,平面

1)证明:平面平面

2)若二面角,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】万众瞩目的2018年俄罗斯世界杯决赛于北京时间201871523时在俄罗斯莫斯科的卢日尼基体育场进行.为确保总决赛的顺利进行,组委会决定在比赛地点卢日尼基球场外临时围建一个矩形观众候场区,总面积为(如图所示).要求矩形场地的一面利用体育场的外墙,其余三面用铁栏杆围,并且要在体育馆外墙对面留一个长度为的入口.现已知铁栏杆的租用费用为100元/.设该矩形区域的长为(单位:),租用铁栏杆的总费用为(单位:元).

1)将表示为的函数;

2)试确定,使得租用此区域所用铁栏杆所需费用最小,并求出最小费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为保障城市蔬菜供应,某蔬菜种植基地每年投入20万元搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入2万元,其中甲大棚种西红柿,乙大棚种黄瓜.根据以往的经验,发现种西红柿的年收入、种黄瓜的年收入与大棚投入分别满足.设甲大棚的投入为,每年两个大棚的总收入为.(投入与收入的单位均为万元)

(Ⅰ)求的值.

(Ⅱ)试问:如何安排甲、乙两个大棚的投入,才能使年总收人最大?并求最大年总收入.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知在平面直角坐标系中,圆的参数方程为 (为参数).以原点为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标系.

(I)求圆的普通方程及其极坐标方程;

(II)设直线的极坐标方程为,射线与圆的交点为,与直线的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中, ,动点满足:以为直径的圆与轴相切.

(1)求点的轨迹方程;

(2)设点的轨迹为曲线,直线过点且与交于两点,当的面积之和取得最小值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积的经验公式为:.弧田(如图1阴影部分)由圆弧和其所对弦围成,弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.类比弧田面积公式得到球缺(如图 2)近似体积公式:圆面积.球缺是指一个球被平面截下的一部分,厦门嘉庚体育馆近似球缺结构(如图3),若该体育馆占地面积约为18000,建筑容积约为340000,估计体育馆建筑高度(单位:)所在区间为( )

参考数据:

.

A. B. C. D.

查看答案和解析>>

同步练习册答案