精英家教网 > 高中数学 > 题目详情

【题目】设数列的前项和为,且),设),数列的前项和.

1)求的值;

2)利用“归纳—猜想—证明”求出的通项公式;

3)求数列的通项公式.

【答案】1;(2);(3.

【解析】

1)先代,求得,当时,根据,化简得到的递推式,

再代,求得,并为求第(2)问提供基础;

2)由(1)归纳猜想,并用数学归纳法证明;

3)由(2)求得的,求出,并化简,分析,发现可用裂项相消法求解,

考虑消去方便,可对分奇数和偶数两种情况分析,最后合并得到答案.

解:(1)由,令,则,得

时,由,得,得

,得,令,得,即.

2)由(1)知,猜想

下面用数学归纳法证明:① 时,由猜想知显然成立;

②假设猜想成立,即

则当时,由(1)有

即当时,猜想也成立.

综合①②可知,猜想成立,即

3)由(2)知,当时,

综合知:,又

为偶数时,

为奇数时,

综上可得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)的焦点为F(1,0),抛物线E:x2=2py的焦点为M.

(1)若过点M的直线l与抛物线C有且只有一个交点,求直线l的方程;

(2)若直线MF与抛物线C交于A,B两点,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某中学举行的物理知识竞赛中,将三个年级参赛学生的成绩在进行整理后分成5组,绘制出如图所示的须率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组.已知第三小组的频数是15.

1)求成绩在50-70分的频率是多少

2)求这三个年级参赛学生的总人数是多少:

3)求成绩在80-100分的学生人数是多少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的方程为x2(y2)21,直线l的方程为x2y0,点P在直线l上,过点P作圆M的切线PAPB,切点为AB.

()APB60°,试求点P的坐标;

()若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当CD=时,求直线CD的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点ABCD的坐标分别为A(3,0)B(0,3)C(cosα,sinα),α∈(,).

1)若,求角α的值;

2)若,求的值.

3)若在定义域α∈(,)有最小值,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足下列条件:在定义域内存在,使得成立,则称函数具有性质;反之,若不存在,则称函数不具有性质.

1)已知函数具有性质,求出对应的的值;

2)证明:函数一定不具有性质

3)下列三个函数:,哪些恒具有性质,并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高科技企业生产产品和产品需要甲、乙两种新型材料.生产一件产品需要甲材料,乙材料,并且需要花费1天时间;生产一件产品需要甲材料,乙材料,也需要1天时间,生产一件产品的利润为1000元,生产一件产品的利润为2000.该企业现有甲、乙材料各,则在不超过120天的条件下,求生产产品、产品的利润之和的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】风景秀美的宝湖畔有四棵高大的银杏树,记作A,B,P,Q,湖岸部分地方围有铁丝网不能靠近.欲测量P,Q两棵树和A,P两棵树之间的距离,现可测得A,B两点间的距离为100 m,∠PAB=75°,∠QAB=45°,∠PBA=60°,∠QBA=90°,如图所示.则P,Q两棵树和A,P两棵树之间的距离各为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面ABCD为梯形,,则在面PBC内  

A. 一定存在与CD平行的直线

B. 一定存在与AD平行的直线

C. 一定存在与AD垂直的直线

D. 不存在与CD垂直的直线

查看答案和解析>>

同步练习册答案