精英家教网 > 高中数学 > 题目详情

【题目】《数书九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即.已知满足 .且,则用以上给出的公式可求得的面积为____

【答案】

【解析】

由题意可得:c=2a=2a,利用正弦定理化简已知等式可得a2+c2b2ac,根据题意利用三角形的面积公式即可计算得解.

解:∵AB=2BC=2

∴由题意可得:c=2a=2a

∵(sinA﹣sinB)(sinA+sinB)=sinAsinC﹣sin2C

∴由正弦定理可得:(ab)(a+b)=acc2,可得:a2+c2b2ac

Sac

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数的相邻两对称轴间的距离为,若将的图像先向左平移个单位,再向下平移个单位,所得的函数为奇函数.

1)求的解析式;

2)若关于的方程在区间上有两个不等实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各图中,AB为正方体的两个顶点,MNP分别为其所在棱的中点,能得出AB//平面MNP的图形的序号是( )

A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点的坐标分别为.直线相交于点,且它们的斜率之积是.记点的轨迹为

Ⅰ)求的方程.

Ⅱ)已知直线分别交直线于点,轨迹在点处的切线与线段交于点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是经销一件该商品,若顾客采用一次性付款,商场获得利润200若顾客采用分期付款,商场获得利润250元.

1)求3位购买该商品的顾客中至少有1位采用一次性付款的概率

2)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,且

(1)证明:平面

(2)在线段上,是否存在一点,使得二面角的大小为?如果存在,求的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角三角形中,分别为内角所对的边,且满足.

1)求角的大小;

2)若,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体的底面是边长为的菱形, 底面 ,且

1证明:平面平面

2若直线与平面所成的角为求二面角

的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,随着互联网的发展,诸如滴滴打车”“神州专车等网约车服务在我国各:城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为掌握网约车在省的发展情况,省某调查机构从该省抽取了个城市,分别收集和分析了网约车的两项指标数,数据如下表所示:

城市1

城市2

城市3

城市4

城市5

指标数

指标数

经计算得:

1)试求间的相关系数,并利用说明是否具有较强的线性相关关系(,则线性相关程度很高,可用线性回归模型拟合)

2)立关于的回归方程,并预测当指标数为时,指标数的估计值.

附:相关公式:

参考数据:

查看答案和解析>>

同步练习册答案