精英家教网 > 高中数学 > 题目详情

【题目】已知函数 (其中 ).

(1)若函数上为增函数,求实数的取值范围;

(2)当时,求函数上的最大值和最小值;

(3)当时,求证:对于任意大于1的正整数,都有.

【答案】(1) ;(2)最大值是 ,最小值是0;(3)证明见解析 .

【解析】试题分析:(1)先求出函数的导数由题意可知:当 恒成立,解出的取值范围即可;(2)求导函数,确定函数的单调性,比较端点的函数值,即可求得结论;(3)利用(2)的结论只要令利用放缩法证明即可.

试题解析:(1)

函数上为增函数, 对任意恒成立. 对任意恒成立,即对任意恒成立. 时, 所求正实数的取值范围是.

(2)当时, 时, ,故上单调递减; 时, ,故上单调递增;

上有唯一的极小值点,也是最小值点,

又因为

所以上有的最大值是

综上所述, 上有的最大值是,最小值是0

(3)当时, ,故上是增函数.

时,令,则当时,

所以,即

所以

对于任意大于1的正整数,都有.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连结DG并延长交圆于点A,作弦AB垂直EP,垂足为F.

(Ⅰ)求证:AB为圆的直径;

(Ⅱ)若AC=BD,求证:AB=ED.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义2×2矩阵 =a1a4﹣a2a3 , 若f(x)= ,则f(x)的图象向右平移 个单位得到函数g(x),则函数g(x)解析式为( )
A.g(x)=﹣2cos2x
B.g(x)=﹣2sin2x
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如图:四边形ABCD是矩形,BC⊥平面ABE,且AE=2 ,EB=BC=2,点F为CE上一点,且BF⊥平面ACE.

(1)求证:AE∥平面BFD;
(2)求三棱锥A﹣DBE的体积;
(3)求二面角D﹣BE﹣A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中, 分别是的中点.

(1)求证:四边形是菱形;

(2)求异面直线所成角的大小 (结果用反三角函数值表示) .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的离心率为,顶点为,且

(1)求椭圆的方程;

(2)是椭圆上除顶点外的任意点,直线轴于点,直线于点.设的斜率为 的斜率为,试问是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨),一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 分成9组,制成了如图所示的频率分布直方图.

(Ⅰ)求直方图中的值;

(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为,求的分布列与数学期望.

(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值(精确到0.01),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某条公共汽车线路收支差额与乘客量的函数关系如图所示(收支差额车票收入支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议()不改变车票价格,减少支出费用;建议()不改变支出费用,提高车票价格,下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则

A. ①反映了建议(Ⅱ),③反映了建议(Ⅰ)

B. ①反映了建议(Ⅰ),③反映了建议(Ⅱ)

C. ②反映了建议(Ⅰ),④反映了建议(Ⅱ)

D. ④反映了建议(Ⅰ),②反映了建议(Ⅱ)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点P(1,0,﹣1),平行于向量=(2,1,1),平面α过直线l与点M(1,2,3),则平面α的法向量不可能是(  )
A.(1,﹣4,2)
B.(,-1,)
C.(-,1,-)
D.(0,﹣1,1)

查看答案和解析>>

同步练习册答案