精英家教网 > 高中数学 > 题目详情
把曲线C1
x2
4
+
y2
k
=1
按向量
a
=(1 , 2)
平移后得到曲线C2,曲线C2有一条准线为x=5,则k=(  )
分析:把曲线C1
x2
4
+
y2
k
=1
按向量
a
=(1,2)平移后得到曲线C2,得曲线C2的中心在(1,2),又因曲线C2有一条准线方程为x=5,故可知曲线C1必为椭圆,结合椭圆的简单性质得到曲线C2的中心到准线x=5的距离为
a 2
c
,据此列出方程式求出c值即可.
解答:解:把曲线C1
x2
4
+
y2
k
=1
按向量
a
=(1,2)平移后得到曲线C2
得曲线C2的中心在(1,2),
又因曲线C2有一条准线方程为x=5,故可知曲线C1必为椭圆,∴k>0,
此时,曲线C2的中心到准线x=5的距离为
a 2
c

a 2
c
=5-1=4,⇒
4
c
=4
,⇒c=1,
∴k=a2-c2=4-1=3,⇒k=3;
故选C.
点评:本小题主要考查函数的图象与图象变化、椭圆的简单性质等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2005•东城区一模)把曲线C1
x2
4
-
y2
k
=1
按向量
a
=(1,2)平移后得到曲线C2,曲线C2有一条准线方程为x=5,则k的值为
-3
-3
;离心率e为
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
设矩阵M所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.
(2)选修4一4:坐标系与参数方程
已知直线C1
x=1+tcosα
y=tsinα
(t为参数),C2
x=cosθ
y=sinθ
(θ为参数).
(Ⅰ)当α=
π
3
时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(3)选修4一5:不等式选讲
已知a,b,c均为正实数,且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
设矩阵M所对应的变换是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.
(Ⅰ)求矩阵M的特征值及相应的特征向量;
(Ⅱ)求逆矩阵M-1以及椭圆
x2
4
+
y2
9
=1
在M-1的作用下的新曲线的方程.
(2)选修4一4:坐标系与参数方程
已知直线C1
x=1+tcosα
y=tsinα
(t为参数),C2
x=cosθ
y=sinθ
(θ为参数).
(Ⅰ)当α=
π
3
时,求C1与C2的交点坐标;
(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程.
(3)选修4一5:不等式选讲
已知a,b,c均为正实数,且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

把曲线C1
x2
4
+
y2
k
=1
按向量
a
=(1 , 2)
平移后得到曲线C2,曲线C2有一条准线为x=5,则k=(  )
A.±3B.±2C.3D.-3

查看答案和解析>>

同步练习册答案