精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左焦点,直线y轴交于点P.且与椭圆交于AB两点.A为椭圆的右顶点,Bx轴上的射影恰为

1)求椭圆E的方程;

2M为椭圆E在第一象限部分上一点,直线MP与椭圆交于另一点N,若,求的取值范围.

【答案】1;(2)

【解析】

2)利用已知条件列出方程组,求解椭圆的几何量,然后求解椭圆E的方程.
2)利用三角形的面积的比值,推出线段的比值,得到

MN方程:,联立方程,利用韦达定理,求出
,解出,将代入韦达定理,然后求解实数λ的取值范围.

解:与椭圆的一个交点A为椭圆的右顶点

.

轴,得到点

椭圆E的方程为

(2)因为

所以,由(1)可知,设MN方程

联立方程,得,得

,有,将其代入化简可得:,因为M为椭圆E在第一象限部分上一点,所以

,则

解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线的极坐标方程为,曲线的极坐标方程为

(l)设为参数,若,求直线的参数方程;

2)已知直线与曲线交于,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆,定义椭圆的“相关圆”方程为.若抛物线的焦点与椭圆的一个焦点重合,且椭圆短轴的一个端点和其两个焦点构成直角三角形.

(1)求椭圆的方程和“相关圆”的方程;

(2)过“相关圆”上任意一点的直线与椭圆交于两点.为坐标原点,若,证明原点到直线的距离是定值,并求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数的极小值为0,求的值;

(2),求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆x2+y2=8内有一点P0-12),AB为过点P0且倾斜角为α的弦.

1)当α=时,求AB的长;

2)当弦AB被点P0平分时,写出直线AB的方程(用直线方程的一般式表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的方程为,曲线是以坐标原点为顶点,直线为准线的抛物线.以坐标原点为极点,轴非负半轴为极轴建立极坐标系.

(1)分别求出直线与曲线的极坐标方程:

(2)点是曲线上位于第一象限内的一个动点,点是直线上位于第二象限内的一个动点,且,请求出的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC,A,B,C所对的边分別为a,b,c,asinAcosC+csinAcosA=c.

(1)c=1,sinC=,ABC的面积S;

(2)DAC的中点,cosB=,BD=,ABC的三边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0)的焦点为F,抛物线上的两个动点A,B始终满足∠AFB=60°,过弦AB的中点H作抛物线的准线的垂线HN,垂足为N,的取值范围为

A.(0,]B.[,+∞)

C.[1,+∞)D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和为,且满足,数列中,,对任意正整数.

1)求数列的通项公式;

2)是否存在实数,使得数列是等比数列?若存在,请求出实数及公比q的值,若不存在,请说明理由;

3)求数列n项和.

查看答案和解析>>

同步练习册答案