精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,(x>0)}\\{{3}^{x},(x≤0)}\end{array}\right.$,则f(f($\frac{1}{9}$))的值是$\frac{1}{9}$.

分析 由已知中函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,(x>0)}\\{{3}^{x},(x≤0)}\end{array}\right.$,代入可得答案.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,(x>0)}\\{{3}^{x},(x≤0)}\end{array}\right.$,
∴f($\frac{1}{9}$)=-2,
f(f($\frac{1}{9}$))=f(-2)=$\frac{1}{9}$,
故答案为:$\frac{1}{9}$

点评 本题考查的知识点是分段函数的应用,函数求值,难度基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.某公司生产一种产品,第一年投入资金1 000 万元,出售产品收入 40 万元,预计以后每年的投入资金是上一年的一半,出售产品所得收入比上一年多 80 万元,同时,当预计投入的资金低于 20 万元时,就按 20 万元投入,且当年出售产品收入与上一年相等.
(Ⅰ)求第n年的预计投入资金与出售产品的收入;
(Ⅱ)预计从哪一年起该公司开始盈利?(注:盈利是指总收入大于总投入)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2ex-$\frac{1}{2}$ax
(Ⅰ)求f(x)的单调区间
(Ⅱ)若x≥0时,f(x)≥(x-a)2-$\frac{1}{2}$ax-3恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax2+bx.
(Ⅰ)若函数f(x)在x=3处的切线与直线24x-y+1=0平行,函数f(x)在x=1处取得极值,求函数f(x)的递减区间;
(Ⅱ)若a=1,且函数f(x)在[-1,1]上是减函数,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(a>0,b>0)与抛物线$y=\frac{1}{8}{x^2}$有一个公共焦点F,双曲线上过点F且垂直于y轴的弦长为$\frac{{2\sqrt{3}}}{3}$,则双曲线的离心率为(  )
A.2B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{3\sqrt{2}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若向量$\overrightarrow a=(sin2α,cosα),\overrightarrow b=(1,cosα)$,且$tanα=\frac{1}{2}$,则$\overrightarrow a•\overrightarrow b$的值是(  )
A.$\frac{8}{5}$B.$\frac{6}{5}$C.$\frac{4}{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.袋中有3个大小、质量相同的小球,每个小球上分别写有数字0,1,2,随机摸出一个将其上的数字记为a1,然后放回袋中,再次随机摸出一个,将其上的数字记为a2,依次下去,第n次随机摸出一个,将其上的数字记为an记ξn=a1a2…an,则(1)随机变量ξ2的期望是1;
(2)当${ξ_n}={2^{n-1}}$时的概率是$\frac{n}{{3}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列命题中,正确的一个命题是(  )
A.“?x∈R,使得x2-1<0”的否定是:“?x∈R,均有x2-1>0”
B.“若x=3,则x2-2x-3=0”的否命题是:“若x≠3,则x2-2x-3≠0”
C.“存在四边相等的四边形不是正方形”是假命题
D.“若cosx=cosy,则x=y”的逆否命题是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知($\sqrt{x}$+$\frac{2}{\sqrt{x}}$)n展开式中第二、三、四项的二项式系数成等差数列.
(Ⅰ)求n的值;
(Ⅱ)此展开式中是否有常数项?为什么?

查看答案和解析>>

同步练习册答案