精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求函数的极值;

2)若,试讨论关于的方程 的解的个数,并说明理由.

【答案】(1)当时, 无极值;当时, 有极小值,无极大值。(2)唯一解

【解析】试题分析:1)求出函数的导数,通过讨论m的范围,求出函数的单调区间,从而写出函数的极值;2 ,问题等价于求函数的零点个数,通过讨论m的范围,判断即可.

试题解析:

(1)依题意得,

时, ,故函数上单调递增, 无极值;

时,令 (舍)

时, ,函数上单调递减;

时, ,函数上单调递增.

故函数有极小值.

综上所述:当时, 无极值;

时, 有极小值,无极大值.

(2)令 ,问题等价于求函数的零点个数.

易得

时, ,函数为减函数,因为 ,所以有唯一零点;

时,则当时, ,而当时,

所以,函数上单调递减,在单调递增,

因为 ,所以函数有唯一零点.

综上,若,函数有唯一零点,即方程方程有唯一解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数.

1时, ,若当时, 恒成立,求的最小值

2)若的图像关于对称,且时, ,求当时, 的解析式;

3时, .若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1 , F2为椭圆 的左、右焦点,F2在以 为圆心,1为半径的圆C2上,且|QF1|+|QF2|=2a.

(1)求椭圆C1的方程;
(2)过点P(0,1)的直线l1交椭圆C1于A,B两点,过P与l1垂直的直线l2交圆C2于C,D两点,M为线段CD中点,求△MAB面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.

(1)证明PA∥平面EDB;
(2)证明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx=1-x2ex

1)讨论fx)的单调性;

2)当x≥0时,fxax+1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数中,表示相等函数的一组是(
A.f(x)=1,g(x)=x0?
B.f(x)=|x|,g(t)=
C.f(x)= ,g(x)=x+1?
D.f(x)=lg(x+1)+lg(x﹣1),g(x)=lg(x2﹣1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 的图象在点处的切线与直线平行.

(1)求的值;

(2)若函数,且在区间上是单调函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线y=1+ 与直线kx﹣y﹣2k+5=0有两个交点时,实数k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为R,若存在常数T≠0,使得f(x)=Tf(x+T)对任意的x∈R成立,则称函数f(x)是Ω函数. (Ⅰ)判断函数f(x)=x,g(x)=sinπx是否是Ω函数;(只需写出结论)
(Ⅱ)说明:请在(i)、(ii)问中选择一问解答即可,两问都作答的按选择(i)计分
(i)求证:若函数f(x)是Ω函数,且f(x)是偶函数,则f(x)是周期函数;
(ii)求证:若函数f(x)是Ω函数,且f(x)是奇函数,则f(x)是周期函数;
(Ⅲ)求证:当a>1时,函数f(x)=ax一定是Ω函数.

查看答案和解析>>

同步练习册答案