精英家教网 > 高中数学 > 题目详情
(2010•台州二模)设[x]表示不超过x的最大整数(如[2]=2,[1.3]=1),已知函数f(x)=
[x+
1
2
]
[x]+
1
2
(x≥0),当f(x)<1时,实数x的取值范围是
{x|k≤x<k+
1
2
,k∈N}
{x|k≤x<k+
1
2
,k∈N}
分析:由原不等式可得[x+
1
2
]<[x]+
1
2
,即[x+
1
2
]-[x]<
1
2
,故有 k≤x<k+
1
2
,k∈N
,从而得出结论.
解答:解:f(x)<1,即
[x+
1
2
]
[x]+
1
2
<1. 
又 x≥0,∴[x+
1
2
]<[x]+
1
2
,即[x+
1
2
]-[x]<
1
2

设[x]=k,k∈N,则有   k≤x<k+1,且k≤x+
1
2
<k+1.
取交集可得 k≤x<k+
1
2
,k∈N

故答案为 {x|k≤x<k+
1
2
,k∈N}
点评:本题主要考查分式不等式的解法,注意[x]的意义,这是解题的易错点,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•台州二模)已知函数f(x)=x|x-a|+x-2在R上恒为增函数,则a的取值范围是
[-1,1]
[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州二模)已知等差数列{an}中,a1+a5+a9=
π
4
,则sin(a4+a6)=
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州二模)一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为1的圆,且这个几何体是球体的一部分,则这个几何体的表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州二模)若P0(x0,y0)在椭圆
x2
a2
+
y2
b2
=1
外,则过P0作椭圆的两条切线的切点为P1,P2,则切点弦P1P2所在直线方程是
x0x
a2
+
y0y
b2
=1
.那么对于双曲线则有如下命题:若P0(x0,y0)在双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
外,则过P0作双曲线的两条切线的切点为P1,P2,则切点弦P1P2的所在直线方程是
x0x
a2
-
y0y
b2
=1
x0x
a2
-
y0y
b2
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•台州二模)“x>2且y>2”是“x+y>4”的(  )

查看答案和解析>>

同步练习册答案