精英家教网 > 高中数学 > 题目详情

已知P是平行四边形ABCD所在平面外一点,Q是PA的中点.

求证:PC∥平面BDQ.

答案:略
解析:

证明:连结ACBDO,连结QO

ABCD是平行四边形,∴OAC的中点.

QPA的中点,

QOPC

显然

PC∥平面BDQ


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在平面直角坐标系xOy中,已知四边形OABC是平行四边形,且点A(4,  0),  C(1,  
3
)

(1)求∠ABC的大小;
(2)设点M是OA的中点,点P在线段BC上运动
(包括端点),求
OP
CM
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知四边形OABC是平行四边形,A(4,0),C(1,
3
),点M是OA的中点,点P在线段BC上运动(包括端点),如图
(Ⅰ)求∠ABC的大小;
(Ⅱ)是否存在实数λ,使
OA
-
OP
)⊥
CM
?若存在,求出满足条件的实数λ的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
p
|=2
2
,|
q
|=3
p
q
的夹角为
π
4
,则以  
a
=5
p
+2
q
b
=
p
-3
q
为邻边的平行四边形的长度较小的对角线的长是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四个命题:①三点确定一个平面;②若点P不在平面α内,A、B、C三点都在平面α内,则P、A、B、C四点不在同一平面内;③两两相交的三条直线在同一平面内;④两组对边分别相等的四边形是平行四边形.其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥P-ABCD的底面ABCD是平行四边形,PA=AB=AD=a,PB=PD=
2
a
,点E为PB的中点,点F为PC的中点.
(Ⅰ)求证:PD∥面EAC;
(Ⅱ)求证:面PBD⊥面PAC;
(Ⅲ)在线段BD上是否存在一点H满足FH∥面EAC?若存在,请指出点H的具体位置,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案