精英家教网 > 高中数学 > 题目详情
如图所示,一条直角走廊宽为2米。现有一转动灵活的平板车,其平板面为矩形ABEF,它的宽为1米。直线EF分别交直线AC、BCM、N,过墙角DDPACPDQBCQ;若平板车要想顺利通过直角走廊,其长度不能超过多少米?

“平板车要想顺利通过直角走廊”即对任意角(),平板车的长度不能超过,即平板车的长度;记 ,有=
===,                                            10分
此后研究函数的最小值,方法很多;如换元(记,则)或直接求导,以确定函数在上的单调性;
时取得最小值。                    15分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,O是正方形ABCD的中心,PO底面ABCDEPC的中点.
求证:⑴PA∥平面BDE
⑵平面PAC 平面BDE.    
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD—中,AB=2,,E为的中点,连结ED,EC,EB和DB,
(1)求证:平面EDB⊥平面EBC;
(2)求二面角E-DB-C的正切值.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,正方形所在的平面与平面垂直,的交点,,且

 

 
  (1)求证:平面

  (2)求直线与平面所成的角的大小;
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P—ABCD的底面ABCD为等腰梯形,AB//CD,AC⊥DB,ACBD相交于点O,且顶点P在底面上的射影恰为O点,又BO=2,PO=PB⊥PD.
(Ⅰ)求异面直线PDBC所成角的余弦值;
(Ⅱ)求二面角P—AB—C的大小;
(Ⅲ)设点M在棱PC上,且,问为何值时,PC⊥平面BMD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图四棱锥中,底面正方形的边长为2
(1)求点到平面的距离;
(2)求直线与平面所成角的大小;
(3)求以为半平面的二面角的正切值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

水平桌面儿上放置着一个容积为V的密闭长方体玻璃容器ABCD—A1B1C1D1,其中装有V的水。
(1)把容器一端慢慢提起,使容器的一条棱AD保持在桌面上,这个过程中水的形状始终是柱体;(2)在(1)中的运动过程中,水面始终是矩形;(3)把容器提离桌面,随意转动,水面始终过长方体内的一个定点;(4)在(3)中水与容器的接触面积始终不变。
以上说法正确的是_____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正四棱锥中,,点在棱上。
(Ⅰ)问点在何处时,,并加以证明;
(Ⅱ)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,设平面,垂足分别为。若增加一个条件,就能推出。现有:

① 
② 所成的角相等;
③ 内的射影在同一条直线上;
④ 
那么上述几个条件中能成为增加条件的是________。

查看答案和解析>>

同步练习册答案