【题目】阅读程序框图,若输出结果S= ,则整数m的值为( )
A.7
B.8
C.9
D.10
科目:高中数学 来源: 题型:
【题目】设函数f(x)=lnx+ ,m∈R
(1)当m=e(e为自然对数的底数)时,求f(x)的最小值;
(2)讨论函数g(x)=f′(x)﹣ 零点的个数;
(3)(理科)若对任意b>a>0, <1恒成立,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C1的参数方程为 (θ为参数),曲线 C2的极坐标方程为ρcosθ﹣ ρsinθ﹣4=0.
(1)求曲线C1的普通方程和曲线 C2的直角坐标方程;
(2)设P为曲线C1上一点,Q为曲线 C2上一点,求|PQ|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在(0, )上的函数f(x),f′(x)为其导函数,且f(x)<f′(x)tanx恒成立,则( )
A. f( )> f( )
B. f( )<f( )??
C. f( )>f( )
D.f(1)<2f( )?sin1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在△ABC中,角A,B,C的对边分别是a、b、c,且2sin2A+3cos(B+C)=0.
(1)求角A的大小;
(2)若△ABC的面积S=5 ,a= ,求sinB+sinC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是公差为2的等差数列,数列{bn满足bn+1﹣bn=an , 且b2=﹣18,b3=﹣24.
(1)求数列{an}的通项公式;
(2)求bn取得最小值时n的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ﹣ax+cosx(a∈R),x∈[﹣ , ].
(1)若函数f(x)是偶函数,试求a的值;
(2)当a>0时,求证:函数f(x)在(0, )上单调递减.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com