精英家教网 > 高中数学 > 题目详情

【题目】甲乙两人玩猜数字游戏,先由甲心中任想一个数字记为,再由乙猜甲刚才想的数字,把乙猜的数字记为,且.若,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则二人“心有灵犀”的概率为__________

【答案】

【解析】试验发生的所有事件是从0,1,2,3,4,5,6,7,8,9十个数中任取两个共有10×10种不同的结果,

的情况有0,0;1,1;2,2;3,3;4,4;5,5;6,6;7,7;8,8;9,9;

0,1;1,0;1,2;2,1;2,3;3,2;3,4;4,3;4,5;5,4;5,6;6,5;6,7;7,6;7,8;8,7;8,9;9,828种情况,

甲乙出现的结果共有10×10=100,

∴他们心有灵犀的概率为.

故答案为: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中, 分别是棱的中点,点棱上,且 .

(1)求证: 平面

(2)当时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:

(1)取出1球是红球或黑球的概率;

(2)取出1球是红球或黑球或白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来郑州空气污染较为严重,现随机抽取一年(365天)内100天的空气中指数的监测数据,统计结果如下:

空气质量

轻微污染

轻度污染

中度污染

中度重污染

重度污染

天数

4

13

18

30

9

11

15

记某企业每天由空气污染造成的经济损失为(单位:元),指数为.当在区间内时对企业没有造成经济损失;当在区间内时对企业造成经济损失成直线模型(当指数为150时造成的经济损失为500元,当指数为200时,造成的经济损失为700元);当指数大于300时造成的经济损失为2000元.

(1)试写出的表达式;

(2)试估计在本年内随机抽取一天,该天经济损失大于500元且不超过900元的概率;

(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断是否有的把握认为郑州市本年度空气重度污染与供暖有关?

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.32

2.07

2.70

3.74

5.02

6.63

7.87

10.828

,其中

非重度污染

重度污染

合计

供暖季

非供暖季

合计

100

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则(

(A)P1=P2<P3 (B)P1<P2<P3 (C)P1<P2=P3 (D)P3=P2<P1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】7位歌手(17号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次.根据年龄将大众评委分为五组,各组的人数如下:

组别

A

B

C

D

E

人数

50

100

150

150

50

1)为了调查评委对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干评委,其中从B组抽取了6人,请将其余各组抽取的人数填入下表.

组别

A

B

C

D

E

人数

50

100

150

150

50

抽取人数


6




2)在(1)中,若AB两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为半圆的直径,点是半圆弧上的两点, .曲线经过点,且曲线上任意点满足为定值.

(Ⅰ)求曲线的方程;

(Ⅱ)设过点的直线与曲线交于不同的两点,求面积最大时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数, .

(1)试讨论函数的单调性;

(2)当时, 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A. 命题”,则:“

B. 命题“若,则”的否命题是真命题

C. 为假命题,则为假命题

D. 的充分不必要条件,则的必要不充分条件

查看答案和解析>>

同步练习册答案