【题目】已知函数.
(Ⅰ)试求函数的单调区间;
(Ⅱ)若不等式对任意的恒成立,求实数的取值范围.
【答案】(1) 见解析(2)
【解析】试题分析: (1)求出函数的导数,通过讨论a的范围,确定出函数的单调区间即可;(2)问题等价于恒成立,令.因为,则,即,问题转化为,即对任意恒成立.
试题解析:
(Ⅰ)因为
所以
①若,则,即在区间上单调递减;
②若,则当时, ;当时, ;
所以在区间上单调递减,在区间上单调递增;
③若,则当时, ;当时, ;
所以函数在区间上单调递增,在区间上单调递减.
综上所述,若,函数在区间上单调递减;;
若,函数在区间上单调递减,在区间上单调递增;
若,函数在区间上单调递增,在区间上单调递减.
(Ⅱ)依题意得,
令.因为,则,即.
于是,由,得,
即对任意恒成立.
设函数,则.
当时, ;当时, ;
所以函数在上单调递增,在上单调递减;
所以.
于是,可知,解得.
故的取值范围是
科目:高中数学 来源: 题型:
【题目】已知点与点都在椭圆上.
(1)求椭圆的方程;
(2)若的左焦点、左顶点分别为,则是否存在过点且不与轴重合的直线 (记直线与椭圆的交点为),使得点在以线段为直径的圆上;若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M: 及其上一点A(2,4)
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;
(3)设点T(t,o)满足:存在圆M上的两点P和Q,使得,求实数t的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线l:ax+ y﹣1=0与x,y轴的交点分别为A,B,直线l与圆O:x2+y2=1的交点为C,D.给出下列命题:p:a>0,S△AOB= ,q:a>0,|AB|<|CD|.则下面命题正确的是( )
A.p∧q
B.¬p∧¬q
C.p∧¬q
D.¬p∧q
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数().
(1)当时,求函数在上的最大值和最小值;
(2)当时,是否存在正实数,当(是自然对数底数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在女子十米跳台比赛中,已知甲、乙两名选手发挥正常的概率分别为0.9,0.85,求:
(1)甲、乙两名选手发挥均正常的概率;
(2)甲、乙两名选手至多有一名发挥正常的概率;
(3)甲、乙两名选手均出现失误的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知正方体ABCD-A1B1C1D1的棱长为3,M,N分别是棱AA1,AB上的点,且AM=AN=1.
(1)证明:M,N,C,D1四点共面;
(2)平面MNCD1将此正方体分为两部分,求这两部分的体积之比.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com